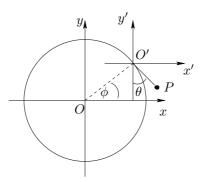
Compito di Istituzioni di Fisica Matematica 27 Novembre 2012

(usare fogli diversi per esercizi diversi)


Primo Esercizio

Si consideri una sfera omogenea, di massa m e raggio r, vincolata a rotolare senza strisciare su un piano Π orizzontale. Chiamiamo B il baricentro della sfera e P il punto di contatto tra questa e il piano. Sulla sfera agisce la forza di gravità, di accelerazione g.

- i) Usando le equazioni cardinali della dinamica determinare il moto del punto B e le componenti della reazione vincolare Φ in P in funzione delle condizioni iniziali $\mathbf{x}_B(0)$, $\dot{\mathbf{x}}_B(0)$, che rappresentano posizione e velocità di B al tempo 0;
- ii) si risponda alla domanda del punto precedente assumendo che la normale al piano di contatto Π formi un angolo $\alpha \in (0, \pi/2)$ con la direzione verticale, e supponendo che ci sia viscosità, modellata come una forza $\mathbf{F} = -k\dot{\mathbf{x}}_B$ applicata al baricentro B della sfera;
- iii) nel caso del punto ii), calcolare il limite della velocità del baricentro per $t \to +\infty$.

Secondo Esercizio

In un piano verticale si fissi un sistema di riferimento $\Sigma = Oxy$, con asse Oy verticale ascendente. Si consideri una guida circolare di raggio R e centro O. Sulla guida si muove un punto O' con legge oraria $t \mapsto \phi(t)$ assegnata, in cui ϕ rappresenta l'angolo tra il vettore O' - O e l'asse Ox. Al punto O' è sospeso un estremo di un'asta di massa trascurabile e lunghezza ℓ ; all'altro estremo dell'asta è fissato un punto materiale P di massa m. Sul sistema agisce la forza di gravità, di accelerazione g. Si consideri anche un'altro riferimento $\Sigma' = O'x'y'$ con la stessa orientazione di Σ .

Usando come coordinata l'angolo θ che l'asta forma con la direzione verticale

- i) scrivere le lagrangiane L, \mathcal{L} del sistema nei due riferimenti Σ e Σ' ;
- ii) dimostrare che L e \mathcal{L} sono equivalenti.