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1 Introduction

i Yon Zeipel’s theorem on singularities in celestial mechanics

-A solution of a system of ordinary differential equations is said to experience a
- singularity at time * < oo i the solution cannot be extended bevond r* A full

undesstanding of the nature of the singularities which can arise in solutions of the

day. Interest in these singularities

' [6], when he asked whether all
* particles.

- n-body problem of classicai celestiai mechanics has eluded mathematics to this

seems to have originated with Painlevé in 1895
singularites are due to collisions between the

¢ An important step towards an answer to Painlevé’s guestion was taken by Hugo
- von Zeipel in 1908 [15). He showed that, if the positions of all the particles

remain bounded as ¢ approaches t*, then the singularity must be due to g

: collision. In other words, a noncollision singularity can oceur only if the system of
. particies becomes unbounded in fj

nite time.

 Yon Zeipel's paper fell into obscurity for a number of years, and recent references
- to it allude to “gaps” and “errors” in the proof [14, p. 431; 16, p. 15; 8, p. 312,
; Although von Zeipel's four page

- contains all the essential ingredients of a complete proof Indeed, when taken in

paper is briefer than one might ideally like, it

hestozical context, it contains impressive insights.

- The purpose of this paper is to translate von Zeipel's proof into modern notation

and terminology. In so doing, this anthor hopes to make von Zeipel's original
ideas more readily available to current researchers and to help clarify von Zeipel's

Painlevt, we begin by describing

- contribuiion to the theory of singularities in celestial mechanics.

2 Painlevé’s Stockholm Lectures

“In the utumn of 1895, at the invitation of Mittag-Lefller and under the sponsor-
“ship of Oscar I, King of Sweden and Norway, Paul Painlevé gave a series of
* lectures in Stockhoim. These lectures were such an important event in the scien-
lific community of Stockholm that the first lecture was attended by the king
i himself” Since von Zeipel's work

on singvlarities was clearly inspired by that of
Painlevé's theorems on the subject. Painlevé's
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lecture notes were published in 1897 [6] and were reproduced in his collecteg
works [7].

Let m,>0 be the mass of particle i, and let 4,eR> be its position. The potentiz]
energy of this system of n particles is given by

—Ug,,....q,}= — Z S e/ B

<l — 4l

where ;| denotes the Euclidean norm in R> The Newionian formulation for the
motion of this system of particles can be written

mié:izF:'U{qls--'!qn}: le!“-:”- {}}

Here the symbol F, denotes the gradient with respect to the i** variable, while the
double dot denotes the second derivative with respect to iime ¢

HII- Hlj

The potential energy fails to be defined whenever iwo or mere of the particles
comcide. If we write

4=, ... 4R,

then we can denote this singular set by

A= 4y
[
where
fjijE{G’EtRa}n:‘h:qi}- (2)

Note that U: (R¥)"—4 — (0, =c) is real-analytic,

If we are given an initial position g{0)e(R*)"—4 and an initial velocity G O1e(R*
then the standard existence and unigueness theory for ordinary differential equa-
tions gives us the existence of a unique solution ¢{z) defined for t=[0, 1%}, where
t*e(0, o] is chosen to be maximal. The vector ¢ 1s a real analytic function of ¢,
and the point ¥ if it is finite, is a singuiarity of this function.

Definition. If t* < oo, then the solution g{t) is said to experience a singrdarity at 1%
g P g ]

In his Stockholm lectures Pamlevé mvestigaied the nature of the singularities
which can occur. He proved the following theorem, which states that the mini-
mum distance between all pairs of particles must approach zero at a singularity.
A nice proof can be found aiso in the book of Siegel and Moser [9]. Here we
have introduced function g: (R*" — [0, 2o} defined by

olgl=min|g,—q |

=<7

Theorem 1. If qit) experiences a singularity ac t%; then o(g(2)) =0 as t - 1%,

A slightly different interpretation of this theorem can be given if one notes that

ela)=12d(g. 4).

Y R I
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Von Zeipel's theorem on singularities in celestial mechanics

j‘g wheie d{q, A) denotes the standard Euclidean distance in R*” from the point ¢ to
he set A. Theorem ! states that gi{t) — 4 as t —t*,

3:It is natural to ask whether (1) must approach some definite point on 4. 4 priori,
?f;:q{ ) might oscillate wildly while approaching 4, or it might become unbounded as
i-the distance fo 4 goes to zero. If g{t) does approach some point g* as [ — ¥ then
> each of the pariicles has some himiting position at time *. Since g* e, at least
7 two of these limiting positions must coincide, which means that these particles
must collide as ¢ —¢* Painlevé called such an event a “collision™. A amgularnj,r
which is not due to a collision he called a *pseudocollision™.

£

g

‘Definition. Suppose that g(r) has a singularity at £* This singularity is called a
colfision il there exists a g*ed such that gt} —g* as 1 —1* Otherwise, the
-singularity is called a psendocollision.

Painleve wondered whether pseudocollisions can oceur and gave credil, without a
spec1ﬁc reference, to Poincaré for having suggested the concept [6, p. 588]. Pain-
levé did succeed in showing that pseudocollisions cannot occur for the three-body
prob]um

Themem 2. For n=3 all singularities are collisions.

TR L T e -"f?‘-.'»’imf'i/\-‘wwa,-‘-ﬁ‘ et

PﬂlIl]"EE also gave a sufficient condition for a smﬂu]antv in the n-body problem
10 be a collision. However, the condition does little more than simply rule out
: behavior more complicated than simultaneous triple collisions and does not provide
> much further insight into the nature of these singularities. Painlevé ended his
‘Stockholm leciures with the unresolved question of whether pseudocollisions
can exist for m>4. This quesiion remains vnresolved today, although there is
i strong evidence supporling the existence of pseudocolisions [2, 5.

.. ..‘.“.‘-'-_A?J-:'_r: T ety

iz g ST

3 Von Zeipel’s Theorem

. Edvard Hugo von Zeipel was born in Sweden in 1873, the grandson of a German
immigrant. He was educated in Stockholm and Uppsala, receiving his Ph.D. from
Uppséla University in 1904, His thesis involved a study of periodic orbits of the
-third kind in the three-body problem. He studied in Paris from June 1904 through
September 1906, taking courses from Poincaré in celestial mechanics and from
. Painlevé in rational mechanics [4]. It is reasonable to suppose that von Zeipel's
-interest in singularities grew out of his association with Poincaré and Painlevé,
since iis paper on the subject appeared in May 1908, less than two vears after ile
- left Paris.

i Here & von Zeipel's theorem as it appears in his paper. This author has taken the
“liberty of translating it from French into English.

. Theorem. If some of the particles do not tend to finite fimiting positions as ¢
approcches t,, then one has necessarify

B R T e e ek M"‘""'f'}“‘""‘mif':WP‘E‘?‘T“Tﬂf":'ﬂ"‘“_,",.'fﬁ‘:ﬂ'ﬂ-:J!.f"ng‘.\;vl""lwﬂm'“r'. R
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where R is the maximum of the mutual distances.

In view of the definitions given above, von Zeipel's theorem states that a sifgy-
larity must be due to collision if the system of particles remains bounded. Ip more
picturesque language we can say that the only way a pseudocollision can oceyy is
for the system of particles to explode to infinity in finite time.

After 1908 von Zeipel seems to have drifted away from the mathematical aspecls
of celestial mechanics and into the more practical side of astronomy. He cop.
tinued to work on the motions of comets and small plansts, but he become more
interested in the structure and evolution of stars. He was elected to the Swedish
Royal Academy of Sciences in 1915 and was appointed to a personal chair of
astronomy at Uppsala in 1919, He served as chairman of the Swedish Astronom;.
cal Society from 1926 to 1935 and as chairman of the National Committee for
Astronomy from 1931 to 1948 In 1930 he won the Morrison prize from the
New York Academy of Sciences for his work on the evolution and consittution of
the stars. It is interesting to note that Mittag-Leffler chose von @‘)sl Lo contribuge
an ariicle to volume 38 of Acia Mathematica, which was published in 1920 ang
devoted 1o the work of Poincaré.

Despite von Zeipel’s rather successful career, his theorem on singularities seems 1o
have failen into obscurity for a number of vears. In 1920 Jean Chazy published a
paper it Comptes Rendus announcing the same theorem [17. He gave no reference
to von Zeipei's work, so one must assume that he was completely unaware of it,
Writing in 1941, Wintner was aware of von Zeipel's paper but was somewhat
skeptical of it {14, p. 431]. By 1970, according to Sperling, “von Zeipel's statement
seems to be virtually unknown” [10, p. 15].

Fortunately, interest in the subject of singularities in celestial mechanics was
renewed m the early 1970°s, due largely to the work of Pollard and Saar. In 1972
Saari extended von Zeipel's result to show that no pseudocollision can occur if
the moment of inertia is “slowly varying™ {8]. 1n 1974 Mather and McGehee
constructed a solution of the four-body problem which becomes unbounded in
finite time [3]). However, their solution contains an infinite number of double
collisions which have been extended by an “clastic bounce” and hence is not an
example of a psendocollision. Gerver recently has given an indication of a con-
struction of a psendocollision for the five-body problem [2]. but the details
apparently are not yet complete.

Today Painlevé question of whether pseudocollisions exisi remains unresolved,
although there secems little doubt that the answer is yes. Even after this question
1s answered, von Zeipels theorem will remain one of the fundamental contri-
butions to the field.
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Von Zeipel's theorem on singularities in celestial mechanics EXL

-4 A decomposition of the system

" An important element in von Zeipel's proof is his decompaosition of the moment

“of inertia of the system of particles into components corresponding to subsystems.
' Today this decomposition is best understood in terms of the geometry of the

~space {R*)" with inner product

<'::'||! P>' = Z m:‘Eqi! pi}:

i=1
- wherz {-, ') denotes the standard inner product on R The moment of inertia is
definzd to be the norm induced by this inner product, ie,

n

)= lgl? =¥ mq,%

i=3

‘We denote the gradient of U with respect to this inner product by FU. That is,

:FU{ag) is the vector in {R?" such that

(FU(g),p>=DU(q)p, for all pe(RY,

i where DU(g): (R*"— R' denotes the derivative of I/, The equations of motion (1)

- then can be writien

g=rUiq). {3

‘Recall that the » particles are labeled with the integers 1 through a. Denote this

¢£.se1 of labels by

N={L2 ..., 0.

P10 ¢ & a subset of N, we can arbitrarily identify as a subsystem thosz particles
- whose labels are in j. The set of points on the singular set A corresponding to

_coincidence between all the particles in the subsystem is

4,={qe(R%": q,=q, for all i, jeu}.

‘ Points in 4, can be regarded as poinis of “total collapse™ of the subsystem g If
| is empty, then 4, is undefined. If n contains a single point, then 4, =(R)" I ¢

={i, i, then A =4, as defined in formula (2).

if

Now let w be a pariition of N, that is, a set of mutually disjoint subsets of N

whose union is all of N. A partition of N corresponds to a decomposiiion of the
- total system into subsystems, each correspording to ome of the elements of the
© partition. The set of points corresponding to fotal collapse simultaneously in each
: subsy stem is the linear subspace
d,= Ihl ‘d#'
HeELr

- The distinction between 4., where w is a partition of N, and 4,, where g is a
- subset of N, should be clear from the context.
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If ¢ is a subset of N, then the center of mass of the corresponding subsystem g
defined as

c.q E{:}: n g )iy n).

fEN icn

We use this physical quantity to define a linear map

iLQ;I

i, (R = (R (n gl=c,q il igpsw.

It is easy to check that s, is an_orthogonal projection with range 4, apg
e B LY

nullspace e &
X ={gelR7): Z ni ;=0 for all pew}.

[E=FN

Thus, for each partition «, (R°)" can be written as the direct sum of the orthogo-
nal subspaces 4, and X . If we write /T =id —n_, then [T_ denotes the orthogo.
nal projection of {RY onto X,,. Thus we have

igi? =,

gkt il g 2. i4)

We digress briefly to give a physical interpretation of this last equation. We
compute that
— |- — ; 2
L= gl 2= ), (Y mile,ql,
LELr EEn
Thus I (g) is the moment of inertia of a system of particles consisting of, for each
#<w, a fictitious particle of mass ¥ m, located at the center of mass of the

=

subsystem corresponding to g We also compute that

Jolay=H g7 = 3 J.(q),
ME

whers

Judgy= ) milg; —c;ql”
tep
Thus J,(g) is the moment of inertia with respect to its center of mass of the
subsystem corresponding to p. Equation (4) states that the total moment of inertis
can be decomposed into the sum of the moments of inertia of each of the
subsystems plus the moment of inertia of a system composed of a fictitipus
particle at the center of mass of each subsystem.

The potential energy can be decomposed in an analogous way. If we let

I wym i

N for i},
Uida)=42ig,—q,
I; for i=j,
. sl 5 i Z 2: mt, T e 2
v"rE } s ;'"f_,_ Z '-V'J'i}} Fru-.'.d{}g N c}HF‘ - ] ' Lo '.-JHIE é{ LR Efr'f;
N . ) o - I <
;u.;.x__, {i,g;,_ !11-.’-.! ‘g;'_
o T I -I'
£ L EZ.'E““"“;""
= £_..—$-‘ [ iﬁ:u -ff‘-%lf’:éa(‘{ﬂ i A TE EEJI«"{‘ o k.}{iJ -7
a B . + &
JI’.“'&:J._‘:' E
m
i g "
* . ~ - 1
{7 A P & ﬁ‘i’ eils Hhen
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£ ig ¥ then we write
Ulg)=Y T Uylq)
E feN jeN
{;-:
i When viewed as isolated from the rest of the sysiem, the subsystem corresponding
} t0 ¢ has potential energy
V=Y Y U,
: lsyu jey
, and f: For a parttition & we write
Valg)= Z Valal, (3)
f ~which 1s the total potential enerzy of ali the isolaied subawstems The remaining
10g0- § potential energy,
]Ggﬂ- i r
;i Ual@y=Ulgt -V, (g), {6)
{’
) £ is due to the interactions between the subsystems. To be more precise, if we let
; “ 1L Y UAg for prv=0,
. We ?;I I.-':,_W{II}E ign jev H I
i 0 for p=v,
T then we can write
Uigi= U (. 7
cach @) uZm _Z{,ﬂ () )
[ the .'3 An examination of formula (5} yields the following identity:
Vilg+2)=V,(q) for all zed,,
: We thereflore have that
Vola+m, m=¥_{qt forall pe(R3.
g D1ffarent1atmg with respect to p and setting p=0, we obiain
v DV gz, =0, w2 rifaneg, (o ans oiny
" the ol4) g v . < e ,
ertia & “which, smce 7T, rs orthogonal, yields — €% lﬂ‘j"‘ﬁ CHal e € D23 el e 13
e P, @=0
qous -
; Combining this last equation with (3) and (6}, we thdm
:r: mq: . [7[- (q} f.-; F:':!' Saand B el ’ ul( {.t} dm!;“ vi L suRd [8}
: IRCESYEN T IR 3 I ERCIN
; wsing which we can compute that
S Ffm[q{f}}ﬂ 7, g(1)i” +2<n,q(t), F U (g(h). (3)
p .\
;,-’ > T S ; . {“ o r“’ i / S . =
- - F I y f o T - " F AR vl ,Li r } i "'E-LE" 2§ I
{@ \‘JF L} by -{\JEJL} q‘lifff‘:‘-ﬁj i ':\ xf'\f_;f];-. yd b -\I i_f L | 1
s f"‘-f 1;; sf" e {3
“_"" i 2T} T f‘;fl'?e i ix ] =3 M fr Ao ™ fF 11*‘ B J’J
:i“\ "1‘1*;"‘ 4 !‘, ‘1_,_9} AP L{!T13E 1_,1) F;.,; Vi i“.‘li{ ‘f‘) 3 i.'.h B :i‘:rf; / s
E
F‘“JL “,*':-.ifl:}'f‘ i T2 ﬁt.; U‘r- 4
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5 The proof of von Zeipel’s theorem

We conclude this note by translating von Zeipel's proof into the notation devel.
oped in the previous section. The proof begins with the following lemma, whigy,
states that the moment of inertia must approach a limit, possibly infinite, 4

t— ¥,

Lemma. If g{t) experiences a singularity at 1*, then there exists an 200, e such
that I{g(t) —I* as t —*,

This lemma is proved using Theorem ! and a formula due to Lagrange. A nica
exposition of the details can be found in the book of Siegel and Moser [9, p. 26].
Although Wintner credits this lemma to Painlevé in his Stockholm lectures {14,
p. 434], this author can find no mention of it there. Tt was proved by Sundman in
1506 [11, p. 8] for the case n=3 and by von Zeipel in 1908 [15] for arbitrary
These references are the earliest known to this author,

We now use the lemma to state and prove an eguivalent version of von Zeipel's
theoram.

Theorem. If qit) experiences a singularity ar t* and i gy =IF <o as t-rt*,
then there exisis a g*e 4 such thar gity—g* a5t —1*.

Proof. Let
4= (3 cllale, ),

<[

» [ e 0 [
PR L H ads
ta L e

L

where ¢l denotes the topological closure in (R?y. Since g((r.¢*) is a nonempty
bounded set, iis closure is nonempty and compact. Since 4* is written as the
nested intersection of nonempty compact sets, it is itself nonempty and compact.
Note that 4% is a subset of 4 and that 7{g}=I* for all ged¥.

For each partition e, define
Ar=d4¥nd,.

» Trom among all the partitions @ such that A% =, choose one with minimal
<cardinality. For the remainder of this proof, we let w denote this fixed partition.
‘Note that this choice assures us that all the denominators in formula (7) for U_{g)
are nonzero for all g in 4} and hence that U, ig) is defined on this set. Since A% s
compact, there exist a neighborhood G of A* in (R and a finite M such that

U@l <M and |(n,q FU(g)»|<M  for all geG. (i)
We introduce the variables z and x by defining
z=m qed, and x=11 geX .

k , , : . : L "
s E.. We identify the Cartesian produet of X and 4, with their direct sum, writing

e T SR P

(x, zi=x+z=g=(R7P

1
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£ One of the following two cases must hold.
[Case 1. 4* is not a subset of 4,
E:ZQCase 2. 4% is a subset of A4

: First assume case 1. Choose an open subset B of 4, whose closure B is compact,
such that 4% cBcB=G. Denote the boundary of B i:nr 8B=R—B. For each ¢>0
dx.ﬁ'ae .

D ={xeX : |x| <ol

Again let D, denote the closure and ¢D_ denote the boundary of D,. Write
K,=D, xBc(RY"

Smca &8 is compact and since A*~3B= #, there exist a 5,>0and a t,<t* such

that ) '*iw___ 18w of hie e .
L gl Y (D, x 0B)=0. O s
‘:‘;‘. . L EN] i ‘:{ 1: - 33 .
i Assume that 6, is chosen small enough so that ll =t S !
, K. <G | e 12)

3 Sznce 47 15 not a subset of A4, there exists a (0, o) such that, for infinitely
man- values of ¢ close to t* I}EKg. Henceforth we fix ¢ at this value. Choose ¢,
-so close to t* that

Hgt) —1%| <012 for ¢, <t <i* (13)

Smce #{1) comes infinitely often arbitrarily close to AF as t =%, g{t) must enter
and leave K_ infinitely often as 1 -1 Property (11} implies that ¢(¢) must enter
and leave via &D_x B, so long as 1>r,. We therefore can find an interval [Tas T3]
sausfnng the IoIiml.mg conditions:

gitlekK, for t,<t<1,, (14)
Jol@tall=J, (glt )i =0, {15)
min J (g{t)}<e%2, and. (16}
1y~ 7 <0}/ 3. (17)

* Condition (16} can be met since gt} comes arbitrarily close to 4% for values of ¢
?—f.-a{bnn rily close to t*. Condition (17) can be met since intervals adi]Sf“f ing the first
three conditions occur arbitrarily close to #*.

Now fet T be a point in (7,4, 1) where {,g(1)} achieves #ts maximum value,
Equation {4} implies that Haq)=J,(g)+1,lg). Equations (13) and (16} imply that

1 gth> 1 -7¢%/12,

i

~while equations (13} and (13) imply that - o
'~ IR LI
. : . s .g—,_}; -
I g{m ) <i*—11a%/12. nooe &
i
N y ¢ e SETTISPALED Diaiadd ;..:
et et o vl il i
e el ! " #
1 Largiit- 5 -.-1= i B 5‘}:}‘,'__!'1:
/
t <
’ Fogat _{":"‘—._-. ;i}
i ! Y
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Combining these last two inequalities, we find that

L 4T —1,(g(x: 0> a3, (18)
(On the other hand, (9), (10), {12}, and (14) imply that

2

—{—,!m{qf_r}}z —2M  for ,<t<T,,

dt”

Since 7 15 a local maximum, we therefore have that
Flgles—~1, (gt = —M({r; -9

Coandition {17) now implies that
Iw{q{.f}}_Im{q{rj}}<62;‘!3:

which coniradicts {18). Thus case 1 is impossible.

We have shown that case 2 must hold, Le. that A* must be a subset of 4. h
follows immediately that x(t)—0 as ¢ —r* Furthermore, since AF=4% G 5
neighborhood of A% Thercfore there exists a 1, such that ¢{fjeG for t, <t <=
Equation {8) mmplies that i

l_J oy e oh A, &

wit 17 £ 4 gh._q-‘:: .Q;E__Lf-.(_ Lu, £ Yot -

Hy=m, VU (g()), < A |
I ale b Eirﬁ ers Ll & bty S8z |

which, when combined with {10), implies that
Zi0l sM for ty<r<r®

It follows that z{#} must approach a hmit g*=4_ as t —t*. Therefore
gith=x(t)+z{t} +0+g*  as t—1*,

and the proof i3 compieie.
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