Compito di Istituzioni di Fisica Matematica 23 Giugno 2023

(usare fogli diversi per esercizi diversi)

Esercizio 1. Si consideri il moto di un punto materiale P in \mathbb{R}^3 di massa unitaria soggetto ad una forza centrale con energia potenziale

$$V(\rho) = -\frac{k}{\rho}, \qquad k > 0,$$

con ρ distanza di P dal centro delle forze O.

- i) Scrivere la lagrangiana del sistema nelle coordinate polari $(\rho, \theta) \in \mathbb{R}^+ \times S^1$ introdotte nel piano del moto (assumendo che il momento angolare di P rispetto ad O sia diverso da zero).
- ii) Trovare la soluzione $\bar{\gamma}(t)=(\bar{\rho}(t),\bar{\theta}(t))$ delle equazioni di Eulero-Lagrange del punto i) con le condizioni iniziali

$$\rho(0) = 1$$
, $\dot{\rho}(0) = 0$, $\theta(0) = 0$, $\dot{\theta}(0) = \sqrt{k}$.

iii) Usando la lagrangiana ridotta $\tilde{L}(\rho,\dot{\rho})$, ottenuta col metodo di Routh, calcolare l'estremo superiore dei tempi $t_1>0$ tale che la componente $\bar{\rho}(t)$ della soluzione $\bar{\gamma}(t)$ del punto ii) sia un minimo debole stretto dell'azione lagrangiana $\mathcal{A}_{\tilde{L}}$ nell'insieme delle funzioni $C^1([0,t_1],\mathbb{R})$.

Esercizio 2. Si considerino i due sistemi hamiltoniani con funzioni di Hamilton

$$H(\mathbf{p}, \mathbf{q}) = \mathbf{p} \cdot \mathbf{q} + |\mathbf{p}|^2, \qquad K(\mathbf{p}, \mathbf{q}) = \mathbf{p} \cdot \mathbf{q} + |\mathbf{q}|^2,$$

con $\mathbf{q} \in (\mathbb{R}^+)^n$ e $\mathbf{p} \in \mathbb{R}^n$.

- i) Trovare un integrale completo dell'equazione di Hamilton-Jacobi associata alla hamiltoniana K.
- ii) Indicando con X_H ed X_K i campi vettoriali hamiltoniani associati ad H e K, rispettivamente, determinare il campo vettoriale

$$X = [X_K, X_H]$$

e dimostrare che è integrabile trovando n integrali primi in involuzione e genericamente indipendenti nel dominio in cui sono definite le variabili \mathbf{q} , \mathbf{p} .

iii) Determinare il flusso $\Phi^t(\mathbf{p}, \mathbf{q})$ del campo vettoriale X.

Esercizio 3. Si consideri il sistema hamiltoniano con funzione di Hamilton

$$H_{\epsilon}(I,\varphi) = \frac{1}{2}(I_1^2 - I_2^2) + \epsilon[\cos(k \cdot \varphi) + \sin(k \cdot \varphi)],$$

dove $\epsilon \ll 1$ e

$$I = (I_1, I_2) \in \mathbb{R}^2, \quad \varphi = (\varphi_1, \varphi_2) \in \mathbb{T}^2, \quad k = (k_1, k_2) \in \mathbb{Z}^2 \setminus \{(0, 0)\}.$$

i) Determinare, quando è possibile, una funzione generatrice di una trasformazione canonica vicina all'identità

$$(oldsymbol{I},oldsymbol{arphi}) \stackrel{\Psi_\epsilon}{\longrightarrow} (oldsymbol{ ilde{I}}, oldsymbol{ ilde{arphi}}),$$

con $\tilde{\boldsymbol{I}}=(\tilde{I}_1,\tilde{I}_2),\; \tilde{\boldsymbol{\varphi}}=(\tilde{\varphi}_1,\tilde{\varphi}_2),\; \text{tale che la hamiltoniana}\; K_{\epsilon}=H_{\epsilon}\circ\Psi_{\epsilon}^{-1}$ non dipenda da $\tilde{\varphi}$ al primo ordine in ϵ .

ii) Trovare dei valori del vettore k in modo tale che non sia soddisfatto il principio della media, scrivendo una famiglia di moti che lo viola.