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Summary
To determine the orbit of a solar system body means to compute its position and velocity at

a certain time using the observations of the body, e.g. right ascension and declination if we use
an optical telescope. This allows to compute ephemerides and predict the position of the body at
different times.

This branch of Celestial Mechanics has attracted the interest of several scientists over the last
centuries. However, the ongoing improvements of the observational technologies have set up new
orbit determination problems in the recent years: this is partly due to the availability of different
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observables (e.g. the range, with radar telescopes), but also to the huge amount of data that can
be collected. For these reasons scientists have been induced to think about new algorithms to
compute orbits.

In this chapter we present a review of some orbit determination methods, with particular care
about the computation of preliminary orbits. Here we include both classical methods, due to Gauss
and Laplace, and very recent ones, which are suitable for the sets of optical observations made
with modern telescopes. Also the problem of alternative solutions is considered: we describe some
results on the geometric characterization of the number of preliminary solutions. The last part
of this chapter is devoted to the linkage of short arcs, that is an identification problem appearing
with the very large amount of observations that can be made with modern instruments.

1 Introduction

The determination of the orbits of the solar system bodies is an important branch of Celestial
Mechanics and has attracted the interest of several scientists over the last centuries. The main
problem can be formulated as follows: given a set of observable quantities of a celestial body, made
at different epochs (e.g. the angular positions of an asteroid on the celestial sphere), compute the
position and velocity of the body at the average time of the observations, so that it is possible to
predict the position of the body in the future.

The observations of a celestial body are affected by errors, e.g. due to the instruments, or
to atmospheric effects. It is necessary to take into account the effect of these errors in an orbit
determination procedure.

Here is a short (and incomplete) list of scientists who gave important contributions to this field:
E. Halley, A. J. Lexell, J. L. Lagrange, A. M. Legendre, F. F. Tisserand, P. S. De Laplace, C. F.
Gauss, O. Mossotti, H. Poincaré, C. W. L. Charlier, A. Leuschner.

A key event for the development of orbit determination methods was the discovery of Ceres,
the first main belt1 asteroid, by Giuseppe Piazzi (Observatory of Palermo, January 1, 1801). He
could follow up Ceres in the sky for about 1 month, collecting about 20 observations. Then a
problem was set up for the scientists of that epoch: to predict when and in which part of the sky
Ceres could be observed again. Ceres was recovered one year later by H. W. Olbers and F. Von
Zach, following the suggestions of C. F. Gauss, who among many other scientific interests, was
attracted by astronomical problems and became the director of the Göttingen observatory in 1807.
Gauss’ method consists in two steps: compute a preliminary orbit (see Section 2.2), then apply an
iterative method to obtain a solution of a least squares fit (see Section 3). Unfortunately, there
can be more than one preliminary orbit: this problem is addressed in Section 4.

At the beginning of the XIX century an asteroid was typically observed only once per night;
moreover the number of objects that could be observed was much smaller. The observations at the
present days are different: we can detect many more asteroids and we compare images of the same
field taken a few minutes apart to search for moving objects. In Figure 1 we show three images of
the detection of an asteroid in September 2002.
Thus today there is also an identification problem, that is to join together sets of observations
taken in different nights as belonging to the same observed object. The different cases occurring
in the identification are described in Sections 5, 6.

There is a broad literature about orbit determination: here we restrict the exposition to the
most famous classical methods and to some recent achievements concerning objects orbiting around

1The main belt asteroids (MBAs) are located between the orbits of Mars and Jupiter.
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Figure 1: Three images showing the detection of an asteroid (encircled in the figures) during the
night of September 3, 2002: the time interval between two consecutive images is ≈ 20 minutes.
Courtesy of F. Bernardi.

the Sun (e.g. asteroids), observed with optical instruments.

2 Classical methods of preliminary orbit determination

We illustrate the two classical methods by Laplace and by Gauss to compute a preliminary orbit
of a celestial body orbiting around the Sun and observed from the Earth.

2.1 Laplace’s method

Assume we have the observations (αi, δi) of a solar system body at times ti, i = 1 . . .m, m ≥ 3;
then we can interpolate for α, δ, α̇, δ̇ at a mean time t̄, where the dots indicate the time derivative.
To obtain an orbit we have to compute the radial distance ρ and the radial velocity ρ̇ at the same
time t̄.

Let ρ = ρêρ be the geocentric position vector of the observed body, with ρ = ‖ρ‖ and êρ =
(cos δ cosα, cos δ sinα, sin δ), where α, δ are the right ascension and declination. We denote by
q = qq̂ the heliocentric position of the center of the Earth, with q = ‖q‖, and by r = q + ρ the
heliocentric position of the body.
We use the arc length s to parametrize the motion: s is related to the time t by

ds

dt
=

√

α̇2 cos2 δ + δ̇2
def
= η (proper motion) .

We introduce the moving orthonormal basis

êρ, êv =
dêρ

ds
, ên = êρ × êv . (1)

The relation
dêv

ds
= −êρ + κên

defines the geodesic curvature κ. The second derivative of ρ with respect to t can be written as

d2ρ

dt2
= (ρ̈− ρη2)êρ + (ρη̇ + 2ρ̇η)êv + (ρη2κ)ên .
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On the other hand, assuming the asteroid and the Earth move on Keplerian orbits, we have

d2ρ

dt2
=

d2

dt2
(r− q) = − µ

r3
r+

µ+ µ⊕

q3
q ,

with r = ‖r‖ and µ, µ⊕ the masses of the Sun and of the Earth respectively.
Neglecting the mass of the Earth and projecting the equation of motion onto ên at time t̄ we obtain
the dynamical equation of Laplace’s method

C ρ
q
= 1− q3

r3
with C =

η2κq3

µ(q̂ · ên) , (2)

where ρ, q, r, η, q̂, ên, C denote the values of these quantities at time t̄.
In equation (2) ρ and r are unknown, while the other quantities can be computed by interpo-

lation. Using (2) and the geometric equation

r2 = q2 + ρ2 + 2qρ cos ǫ , (3)

where cos ǫ = q · ρ/(qρ), we can write a polynomial equation of degree eight for r at time t̄ by
eliminating the geocentric distance:

C2r8 − q2(C2 + 2C cos ǫ+ 1)r6 + 2q5(C cos ǫ+ 1)r3 − q8 = 0 . (4)

The occurrence of alternative solutions in equations (2), (3) is discussed in Section 4.1.
The projection of the equations of motion on êv gives

ρη̇ + 2ρ̇η = µ(q · êv)
(

1

q3
− 1

r3

)

. (5)

We can use equation (5) to compute ρ̇ from the values of r, ρ found by (4) and (2).

2.2 Gauss’ Method

Assume we have three observations (αi, δi), i = 1, 2, 3 of a solar system body at times ti, with
t1 < t2 < t3. Let ri,ρi denote the heliocentric and topocentric position of the body respectively,
and let qi be the heliocentric position of the observer. Gauss’ method uses the heliocentric positions

ri = ρi + qi i = 1, 2, 3 . (6)

We assume that |ti− tj|, 1 ≤ i, j ≤ 3, is much smaller than the period of the orbit and write O(∆t)
for the order of magnitude of the time differences.

From the coplanarity condition we have

λ1r1 − r2 + λ3r3 = 0 (7)

for λ1, λ3 ∈ R. The vector product of both members of (7) with ri, i = 1, 3 and the fact that the
vectors ri × rj , i < j have all the same orientation as c = rh × ṙh, h = 1, 2, 3 implies

λ1 =
r2 × r3 · c
r1 × r3 · c

, λ3 =
r1 × r2 · c
r1 × r3 · c

.
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Let ρi = ρiê
ρ
i , i = 1, 2, 3. From the scalar product of êρ1 × êρ3 with both members of (7), using (6),

we obtain
ρ2[ê

ρ
1 × êρ3 · êρ2] = êρ1 × êρ3 · [λ1q1 − q2 + λ3q3] . (8)

The differences ri − r2, i = 1, 3, are expanded in powers of tij = ti − tj = O(∆t) by the f, g series
formalism; thus ri = fir2 + giṙ2, with

fi = 1− µ

2

t2i2
r32

+O(∆t3) , gi = ti2

(

1− µ

6

t2i2
r32

)

+O(∆t4) . (9)

Then ri × r2 = −gic, r1 × r3 = (f1g3 − f3g1)c and

λ1 =
g3

f1g3 − f3g1
, λ3 =

−g1
f1g3 − f3g1

, (10)

f1g3 − f3g1 = t31

(

1− µ

6

t231
r32

)

+O(∆t4) . (11)

Using (9) and (11) in (10) we obtain

λ1 =
t32
t31

[

1 +
µ

6r32
(t231 − t232)

]

+O(∆t3) , (12)

λ3 =
t21
t31

[

1 +
µ

6r32
(t231 − t221)

]

+O(∆t3) . (13)

Let V = êρ1 × êρ2 · êρ3. By substituting (12), (13) into (8), using relations t231 − t232 = t21(t31 + t32)
and t231 − t221 = t32(t31 + t21), we can write

−V ρ2t31 = êρ1 × êρ3 · (t32q1 − t31q2 + t21q3) + (14)

+êρ1 × êρ3 ·
[

µ

6r32
[t32t21(t31 + t32)q1 + t32t21(t31 + t21)q3]

]

+O(∆t4) .

If the O(∆t4) terms are neglected, the coefficient of 1/r32 in (14) is

B(q1,q3) =
µ

6
t32t21ê

ρ
1 × êρ3 · [(t31 + t32)q1 + (t31 + t21)q3]. (15)

Then multiply (14) by q32/B(q1,q3) to obtain

− V ρ2 t31
B(q1,q3)

q32 =
q32
r32

+
A(q1,q2,q3)

B(q1,q3)
,

where
A(q1,q2,q3) = q32 êρ1 × êρ3 · [t32q1 − t31q2 + t21q3] .

Setting

C =
V t31 q

4
2

B(q1,q3)
, γ = −A(q1,q2,q3)

B(q1,q3)
; (16)

we obtain the dynamical equation of Gauss’ method:

C ρ2
q2

= γ − q32
r32

. (17)
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After the possible values for r2 have been found by (17) and by the geometric equation

r22 = ρ22 + q22 + 2ρ2q2 cos ǫ2 , (18)

then the velocity vector ṙ2 can be computed, e.g. from Gibbs’ formulas.
The occurrence of alternative solutions of equations (17), (18) is discussed in Section 4.2.

We observe that in his original formulation Gauss used different quantities as unknowns, whose
values could be improved by an iterative procedure (today called Gauss map).

3 Least squares orbits

We consider the differential equation
dy

dt
= (y, t,µ) (19)

giving the state y ∈ R
p of the system at time t (e.g. p = 6 if y is a vector of orbital elements).

Here µ ∈ R
p′ are some constants, called dynamical parameters.

The integral flow, solution of (19) for initial data y0 at time t0, is denoted by Φt
t0
(y0,µ).

We also introduce the observation function

R = (R1, . . . , Rk) , Rj = Rj(y, t,ν) , j = 1 . . . k

depending on the state y of the system at time t, and on some constants ν ∈ R
p′′, called kinematical

parameters. Moreover we define the prediction function r̃(t) as the composition of the integral flow
with the observation function:

r̃(t) = R(Φt
t0
(y0,µ), t,ν) .

These functions gives a prediction for a specific observation at time t.
We can group the multidimensional data and predictions into two vectors2, with components

ri, r(ti) and define the vector of the residuals

ξ = (ξ1 . . . ξm) , ξi = ri − r(ti) , i = 1 . . .m .

3.1 The least squares principle

We describe the least squares method, introduced by Gauss, whose first celebrated application was
just to the orbit determination of the asteroid Ceres.3

The principle of least squares asserts that the solution of the orbit determination problem
makes the target function

Q(ξ) =
1

m
ξT ξ (20)

2For example, assume the available observations at time τj are the right ascension αj and the declination δj , for
j = 1, . . . , h. Then

m = kh , k = 2 , t2j−1 = t2j = τj ,

{

r2j−1 = αj

r2j = δj
,

{

r(t2j−1) = r̃1(τj)
r(t2j) = r̃2(τj)

.

3There has been a dispute for the invention of the least squares method, that is so important and widely used
in every field of the applied Sciences.
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attain its minimal value. We observe that

ξi = ξi(y0,µ,ν)

and select part of the components of (y0,µ,ν) ∈ R
p+p′+p′′ to form the vector x ∈ R

N of the fit

parameters, i.e. the parameters to be determined by fitting them to the data. Let us define

Q(x) = Q(ξ(x)) .

The remaining components of (y0,µ,ν) form the vector k of the consider parameters. An impor-
tant requirement is that m ≥ N . We introduce the m×N design matrix

B =
∂ξ

∂x
(x)

and search for the minimum of Q(x) by looking for its stationary points:

∂Q

∂x
=

2

m
ξT B = 0 . (21)

Equation (21) is generally nonlinear: we can use Newton’s method to search for its solutions.
The standard Newton’s method involves the computation of the second derivatives of the target
function:

∂2Q

∂x2
=

2

m
(BT B + ξT H) (22)

where

H =
∂2ξ

∂x2
(x)

is a 3-index array of shape m×N ×N . We set

Cnew = BT B + ξT H ;

thus Cnew is a N × N matrix, non-negative in the neighborhood of a local minimum4. Given
the residuals ξ(xk) obtained from the value xk of the fit parameters at iteration k, the linear
approximation of ∂Q

∂x
in a neighborhood of xk, evaluated at the solution x∗ of (21) gives

∂Q

∂x
(xk) +

∂2Q

∂x2
(xk) (x

∗ − xk) = 0 , (23)

that is
Cnew (x∗ − xk) = −BT ξ .

If Cnew(xk) is invertible then

xk+1 = xk + C−1
newD D = −BT ξ ,

where also D = D(xk). The point xk+1 should be a better approximation to x∗ than xk. In the
case of orbit determination the convergence of Newton’s method to solve the least squares fit is
usually not guaranteed, depending on the choice of the first guess x0 selected to start the iterations,
that is on the preliminary orbit.

4By ξTH we mean the matrix with components
∑

i ξi ∂
2ξi/∂xj∂xk.
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3.2 Differential corrections

A variant of Newton’s method, known as differential corrections, is often used to minimize the
target function Q(x). At each iteration we have

xk+1 = xk − (BT B)−1 BTξ

where B is computed at xk, and C = BT B is called normal matrix and replaces the matrix Cnew.
In this way we are neglecting the term ξT H (x∗ − xk) in (23): this approximation works if the
residuals are small enough.
One iteration of differential corrections is just the solution of a linear least squares problem

C (xk+1 − xk) = −BT ξ′. (24)

Equation (24) is called normal equation and this linear problem can be obtained by truncation of
the target function:

Q(x) ≃ Q(xk) +
2

m
ξT B (x− xk) +

1

m
(x− xk)

T C (x− xk) .

Let us denote by x∗ the value of x at convergence. The inverse of the normal matrix

Γ = C−1 (25)

is called covariance matrix and its value in x∗ can be used to estimate the uncertainty of the
solution of the differential correction algorithm. In fact the eigenvalues of Γ are proportional to
the length of the axes of the confidence ellipsoids

1

m
(x− x∗)TC(x− x∗) ≤ σ2 , (26)

where σ is a real number that can be selected within a probabilistic interpretation of the observa-
tional errors.

4 Occurrence of alternative solutions

We describe Charlier’s theory, concerning a geometric interpretation of the occurrence of alterna-
tive (or multiple) solutions in Laplace’s method of preliminary orbit determination, that assumes
geocentric observations.

In Section 4.2 we explain a generalization of this theory, allowing to take into account topocen-
tric observations, that is observations made from the surface of the rotating Earth. This applies
to Gauss’ method, or to the extension of Laplace’s method taking into account topocentric obser-
vations.

Both methods of preliminary orbit determination lead us to two algebraic equations, which
differ only by the value of the coefficients (γ, C, ǫ):

r2 = q2 + ρ2 + 2qρ cos ǫ (geometric equation) (27)

C ρ

q
= γ − q3

r3
(dynamical equation) (28)
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see (3), (2), (17). We introduce the intersection problem






(qγ − Cρ)r3 − q4 = 0
r2 − q2 − ρ2 − 2qρ cos ǫ = 0
r, ρ > 0

, (29)

that is, given (γ, C, ǫ) ∈ R
2 × [0, π] we search for pairs (r, ρ) of strictly positive real numbers,

solutions of (28) and (27). We can eliminate the variable ρ from (29) and obtain the reduced
problem of searching the values r > 0 that are roots of

{

P (r)
def
= C2r8 − q2(C2 + 2Cγ cos ǫ+ γ2)r6 + 2q5(C cos ǫ+ γ)r3 − q8

r > 0
. (30)

Note that P (r) has only four monomials, thus by Descartes’ sign rule there are at most three
positive roots of P (r), counted with multiplicity. Note that, if r = r̄ is a component of a solution
of (29), from (28) we obtain a unique value ρ̄ for the other component and, conversely, from a
value ρ̄ of ρ we obtain a unique r̄. There are no more than three values of ρ that are components
of the solutions of (29).

We define as spurious solution of (30) a positive root r̄ of P (r) that is not a component of
a solution (r̄, ρ̄) of (29) for any ρ̄ > 0, that is it gives a non-positive ρ through the dynamical
equation (28).

How many solutions are possible for the intersection problem? From each solution of (29) a
full set of orbital elements can be determined, in fact the knowledge of the topocentric distance ρ
allows to compute the corresponding value of ρ̇. In case of alternative solutions all of them should
be tested as first guess for the differential corrections.

4.1 Charlier’s theory

Charlier’s theory describes the occurrence of multiple solutions in the problem defined by equa-
tions (2), (3), with geocentric observations. Nevertheless, if in (27), (28) we interpret ρ and q
as the geocentric distance of the observed body and the heliocentric distance of the center of the
Earth, then equation (28) with γ = 1 corresponds to (2) and equation (27) corresponds to (3).
Therefore we shall discuss Charlier’s theory by studying the multiple solutions of (29) with γ = 1,
and we shall see that in this case the solutions of (29) can be at most two.

Charlier realized that ‘the condition for the appearance of another solution simply depends on

the position of the observed body’. We stress that this statement assumes that the two–body model
for the orbit of the observed body is exact and neglects the observation and interpolation errors
in the parameters C, ǫ. In particular we make the following assumption:

the parameters C, ǫ are such that the corresponding intersection

problem with γ = 1 admits at least one solution.
(31)

In the real astronomical applications this assumption may not be fulfilled and the intersection
problem may have no solution, due to the errors in the observations.

For each choice of C, ǫ the polynomial P (r) in (30) with γ = 1 has three changes of sign in the
sequence of its coefficients, in fact the coefficient of r3 is positive because from (28) and (27) we
have

C cos ǫ+ 1 =
1

2ρ2r3
[

(r3 − q3)(r2 − q2) + ρ2(r3 + q3)
]

> 0 ,

9



thus the positive roots of P (r) can indeed be three.
Since P (q) = 0, there is always the solution corresponding to the center of the Earth, in fact, from
the dynamical equation, r = q corresponds to ρ = 0. This solution must be discarded for physical
reasons. Using (31), Descartes’ sign rule and the relations

P (0) = −q8 < 0 ; lim
r→+∞

P (r) = +∞ ,

we conclude that there are always three positive roots of P (r), counted with multiplicity. By (31)
at least one of the other two positive roots r1, r2 is not spurious: if either r1 or r2 is spurious the
solution of (29) is unique, otherwise we have two non–spurious solutions.
To detect the cases with two solutions we write P (r) = (r − q)P1(r), with

P1(r) = C2r6(r + q) + (r2 + qr + q2)
[

q5 − (2C cos ǫ+ 1)q2r3
]

,

so that
P1(q) = 2q7C(C − 3 cos ǫ) .

From the relations
P1(0) = q7 > 0 , lim

r→+∞
P1(r) = +∞

it follows that if P1(q) < 0 then r1 < q < r2, while if P1(q) > 0 then either r1, r2 < q or r1, r2 > q.
In the first case the dynamical equation gives us two values ρ1, ρ2 with ρ1ρ2 < 0, so that one root
of P1(r) is spurious. In the second case both roots give rise to meaningful solutions of (29). If
P1(q) = 0 there is only one non–spurious root of P (r).

We introduce two algebraic curves in geocentric polar coordinates (ρ, ψ), with ψ = 0 towards
the opposition direction (corresponding to ǫ = 0), by

C
(1)(ρ, ψ) = 0 (zero circle) ,

C
(1)(ρ, ψ)− 3 cosψ = 0 (limiting curve) ,

where

C
(1)(ρ, ψ) =

q

ρ

[

1− q3

r3

]

, r =
√

ρ2 + q2 + 2qρ cosψ .

The limiting curve has a loop inside the zero circle and two unlimited branches with r > q. By the
previous discussion the limiting curve and the zero circle divide the reference plane, containing the
center of the Sun, the observer and the observed body at time t̄, into four connected components
(see Figure 2), separating regions with a different number of solutions of the orbit determination
problem. Using heliocentric polar coordinates (r, φ), with ρ2 = r2 + q2 − 2qr cosφ, the limiting
curve is given by

4− 3
r

q
cosφ =

q3

r3
(32)

and, in heliocentric rectangular coordinates (x, y) = (r cosφ, r sinφ), by

4− 3
x

q
=

q3

(x2 + y2)3/2
.

Figure 2 shows in particular that, if the celestial body has been observed close to the opposition
direction, then the solution of Laplace’s method of preliminary orbit determination is unique.
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Figure 2: The limiting curve and the zero circle divide the reference plane into four connected
regions, two with a unique solution of (29) and two with two solutions (shaded in this figure). The
singular curve (dotted) divides the regions with two solutions into two parts, with one solution each.
The Sun and the Earth are labeled with S and E respectively. We use heliocentric rectangular
coordinates, and astronomical units (AU) for both axes. With kind permission from Springer.

In 1911 Charlier introduced the singular curve

4− 3
q

r
cos φ =

r3

q3
, (33)

corresponding to (32) by radial inversion, that divides the regions with two solutions into regions
containing only one solution each (see Figure 2).

4.2 Generalization of Charlier’s theory

We can generalize Charlier’s theory of multiple solutions in preliminary orbit determination from
three observations: this more general theory consider the problem (29) for γ ∈ R.
The following assumption is introduced, that generalizes (31): the parameters γ, C, ǫ are such that
the corresponding intersection problem admits at least one solution.
In this case we can assert that for each given value of γ, the condition for the appearance of another
solution simply depends on the position of the observed body.
The constant γ is a bifurcation parameter and qualitatively different results occurs depending on
which of relations γ ≤ 0, 0 < γ < 1, γ = 1, γ > 1 holds.

Note that r = q generically is not a root of P (r), in fact

P (q) = q8(1− γ) (2C cos ǫ− (1− γ)) ,

11
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Figure 3: Summary of the results on multiple solutions of (29) for all the qualitatively different
cases. The regions with a different number of solutions are enhanced with colours: we use light

gray for two solutions, dark gray for three solutions. Top left: γ = −0.5. Top right: γ = 0.8.
Bottom left: γ = 1 (Charlier’s case). Bottom right: γ = 1.1. With kind permission from Springer.

thus we cannot follow the same steps of Section 4.1 to define the limiting curve. However, for
each value of γ 6= 1 it is possible to perform a geometric construction of a curve delimiting regions
with a different number of solutions. On the contrary, the definition of the zero circle and of the
singular curve for a generic γ is immediate.
Figure 3 summarizes the results for all the qualitatively different cases: there are regions with a
unique solution (white), with two solutions (light gray) and with three solutions (dark gray) of
(29). On top–left of Figure 3 we show the results for γ = −0.5: there are only two regions, with
either one or three solutions. On top–right we show the results for γ = 0.8: in the region outside
the zero circle there are two solutions of (29) while the region inside is divided by the limiting
curve into two parts, with either one or three solutions. On bottom–left we have Charlier’s case
(γ = 1), discussed in Section 4.1. On bottom–right we show the results for γ = 1.1: inside the zero
circle there are two solutions, while the region outside can contain either one or three solutions.
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Note that in each case the singular curve (dotted in the figure) separates the regions with multiple
solutions into parts with only one solution each.

Thus the results on the multiple solutions are generically different from Charlier’s: the solutions
can be up to three and, if γ > 1, there are two solutions close to the opposition direction. However,
in case of three solutions, one of them bifurcates from r = q and, with ground–based observations,
is usually close to that value, thus it is unlike that it corresponds to a good preliminary orbit.

5 New challenges with the modern surveys

The improvements of the observational technologies have produced new orbit determination prob-
lems, mostly due to the very large amount of data than can be collected. The main problem is
to join together sets of observations, made in different nights, as belonging to the same observed
object. This is called identification problem and is the subject of this and the next sections.

5.1 Very short arcs and attributables

The observations of a solar system body are grouped into a very short arc (VSA), also called
tracklet in the astronomical literature.

The VSA is composed by m ≥ 3 optical angular observations (αi, δi) at different times ti,
i = 1 . . .m such that we can fit both angular coordinates as a function of time with a polynomial
model of low degree. In most cases a degree 2 model is used, centered at the mean time t̄ = 1

m

∑

i ti:

α(t) = α(t̄) + α̇(t̄) (t− t̄) +
1

2
α̈(t̄) (t− t̄)2 ,

δ(t) = δ(t̄) + δ̇(t̄) (t− t̄) +
1

2
δ̈(t̄) (t− t̄)2 .

The vector (α, α̇, α̈, δ, δ̇, δ̈) is obtained as solution of a linear least squares problem, together
with two 3× 3 covariance matrices. If the second derivatives are poorly determined then we speak
of a too short arc (TSA); in this case the data do not allow to compute a least squares orbit.

We shall call attributable a vector

A = (α, δ, α̇, δ̇) ∈ [−π, π)× (−π/2, π/2)× R
2 ,

representing the angular position and velocity of the body at the average time t̄ of the observations.
Given an attributable the radial distance ρ and the radial velocity ρ̇ are completely undetermined.

5.2 Identification problems

We classify as follows the identification problems occurring with modern data:

1) orbit identification: join together two sets of observations related to two different orbits
to form an orbit fitting all the data;

2) attribution: join together a TSA with the set of observations of an orbit to form an orbit
fitting all the data;5

5The name attributable has been introduced just to indicate a set of data suitable for attribution to an already
existing orbit.
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3) linkage:6 join together two TSAs of observations to form an orbit fitting all the data.

The linkage operation is the most difficult: in Section 6 we will discuss some algorithms to
perform it. However we warn that an orbit produced by the linkage operation usually needs a
confirmation, by attributing additional data, to be considered reliable.

5.3 Orbit identification

Let x1,x2 ∈ R
6 be two nominal orbits, solutions of least squares problems with normal and

covariance matrices C1, C2,Γ1,Γ2. We can assume that x1,x2 ∈ R
6 are given at the same epoch,

up to orbit and covariance propagation.
Assume the two separate sets of observations

(ti, ri) , i = 1, m1 (ti, ri) , i = m1 + 1, m1 +m2

have been used to determine x1,x2, with m1 observations in the first arc and m2 in the second
arc. Moreover, denote by

ξ1 = (ξi), i = 1, m1 ξ2 = (ξi), i = m1 + 1, m1 +m2

the residuals with respect to the nominal solutions. We can compute the two separate target
functions for i = 1, 2

Qi(x) =
1

mi
ξi · ξi = Qi(xi) + ∆Qi(x) = Qi(xi) +

1

mi
(x− xi) · Ci (x− xi) + . . .

where the dots represent the terms of degree three in (x − xi) and those of degree 2 containing
the residuals. The joint target function Q is a linear combination Q0 of the two separate minima
Q1(x1), Q2(x2) plus a penalty ∆Q measuring the increment of the target function resulting from
the hypothesis that the two objects are the same:

mQ(x) = ξ1 · ξ1 + ξ2 · ξ2 = m1Q1(x) +m2Q2(x) = mQ0 +m∆Q(x) ,

mQ0 = [m1Q1(x1) +m2Q2(x2)] ,

m∆Q(x) = m1∆Q1(x) +m2∆Q2(x) =

= (x− x1) · C1 (x− x1) + (x− x2) · C2 (x− x2) + . . .

We can use the quadratic approximation for both ∆Qi, and obtain an explicit formula for the
solution of the identification problem. Neglecting the higher order terms we have

m ∆Q(x) ≃ (x− x1) · C1 (x− x1) + (x− x2) · C2 (x− x2) =

= x · (C1 + C2)x− 2x · (C1 x1 + C2 x2) + x1 · C1 x1 + x2 · C2 x2 .

The minimum of ∆Q can be found by minimizing the non-homogeneous quadratic form of the
formula above. If we denote this minimum by x0, then by expanding around x0 we have

m ∆Q(x) ≃ (x− x0) · C0 (x− x0) +K

6In the context of space debris this operation is called correlation.
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where

C0 = C1 + C2 ,

C0 x0 = C1 x1 + C2 x2 ,

K = x1 · C1 x1 + x2 · C2 x2 − x0 · C0 x0 .

If the matrix C0 is positive definite, then we can solve for the new minimum point by the covariance
matrix Γ0 = C−1

0 :
x0 = Γ0 (C1 x1 + C2 x2) . (34)

The identification penalty K/m approximates the minimum of the penalty ∆Q(x), normalized
by the number of observations m. In the linear approximation K/m = ∆Q(x0). We observe that
K is translation invariant, that is the transformation

x0 → x0 + v x1 → x1 + v x2 → x2 + v

for an arbitrary vector v gives

K → K + 2v · (C1 x1 + C2 x2 − C0 x0) + v · (C1 + C2 − C0)v = K .

Therefore we can compute K with a translation by −x1, that is assuming x1 → 0, x2 → x2−x1 =
∆x, and x0 → Γ0C2∆x:

K = ∆x · C2∆x− (x0 − x1) · C0 (x0 − x1) = ∆x · (C2 − C2 Γ0C2)∆x . (35)

Alternatively, we can compute K with a translation by −x2 , that is with x2 → 0, x1 → −∆x and
x0 → Γ0C1 (−∆x):

K = ∆x · C1∆x− (x0 − x2) · C0 (x0 − x2) = ∆x · (C1 − C1 Γ0C1)∆x .

Then, setting
C = C2 − C2 Γ0C2 = C1 − C1 Γ0C1 , (36)

we can summarize the conclusions by the formula

Q(x) ≃ Q0 +
1

m
∆x · C∆x+

1

m
(x− x0) · C0 (x− x0) . (37)

Relation (37) allows to assess the uncertainty of the identified solution, by defining confidence
ellipsoids with matrix C0.

5.4 Attribution

We assume an orbit x1 has been fit to the first set of m1 observations, at the mean epoch t1, and
the uncertainty is described by the covariance and normal matrices Γ1, C1. The second arc includes
m2 scalar observations: we assume they form a TSA and compute an attributable A, at the mean
epoch t2.
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Prediction for an attributable

Let us consider a function G that maps an open set of the initial conditions space into the at-
tributable 4-dimensional space, that is the vector of observables is

y(t̄) = (α(t̄), δ(t̄), α̇(t̄), δ̇(t̄)) = G (x(t̄)) .

Given initial conditions x at time t0 with covariance Γ, the prediction function F = G ◦Φt
t0
is also

4-dimensional and its partial derivatives form the matrix DF of dimension 4× 6. The covariance
and normal matrix are the 4× 4 matrices obtained from Γ by

Γy = (DF ) Γ (DF )T Cy = Γ−1
y .

The matrix Γy can be used to assess the uncertainty of all the components of the attributable; the
normal matrix Cy can be used to define the metric used in the attribution algorithm.

Attribution penalty

Let x1 be the attributable, that is the 4-dimensional vector representing the set of observations
to be attributed, and C1 be the 4 × 4 normal matrix of the fit used to compute it. Let x2 be the
predicted attributable, computed from the known least squares orbit, and Γ2 be the covariance
matrix of such 4-dimensional prediction, obtained by propagation of the covariance of the orbital
elements. Then C2 = Γ−1

2 is the corresponding normal matrix. With this new interpretation for the
symbols x1,x2, C1, C2, the algorithm for linear attribution uses the same formulae of Section 5.3
applied in the 4-dimensional attributable space:

C0 = C1 + C2 , Γ0 = C−1
0 ,

x0 = Γ0 [C1 x1 + C2 x2] , (38)

K4 = (x2 − x1) · [C1 − C1 Γ0C1] (x2 − x1) .

The attribution penalty K4/m (m the number of scalar observations) is used to filter out the pairs
orbit-attributable which cannot belong to the same object. For the pairs with K4 below some
control value, we select a preliminary orbit and perform the differential corrections.

6 Linkage

In this section we recall some methods used to deal with the linkage problem of two TSAs. The
linkage is more difficult than the other identification problems because usually we cannot neglect
nonlinear terms in the procedure, as we do for example in the orbit identification problem when
we propagate the orbits with their covariance.

6.1 The admissible region method

Let A be an attributable at time t̄ for a celestial body A. As already mentioned, the information
contained in A leaves completely unknown the topocentric distance ρ and the radial velocity ρ̇.
However, we can constrain the possible values of ρ, ρ̇ by making some hypotheses on the physical
and dynamical nature of the observed object.
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We introduce the two-body energy of the heliocentric orbit of A:

E⊙(ρ, ρ̇) =
1

2
‖ṙ(ρ, ρ̇)‖2 − k2

1

‖r(ρ)‖ , (39)

where k is Gauss’ constant. We consider the region excluding interstellar orbits, that is satisfying
condition

E⊙(ρ, ρ̇) ≤ 0 . (40)

The heliocentric position of A is
r = q+ ρ êρ , (41)

where êρ is the unit vector in the observation direction and q the heliocentric position of the
observer. Using as coordinates (ρ, α, δ), the heliocentric velocity ṙ of A is

ṙ = q̇+ ρ̇ êρ + ρ cos δα̇ êα + ρ δ̇ êδ , (42)

where

êα =
1

cos δ

∂êρ

∂α
, êδ =

∂êρ

∂δ

and q̇ is the heliocentric velocity of the observer. The vectors êρ, êα, êδ form an orthonormal basis:

êρ · êα = êρ · êδ = êα · êδ = 0 , ‖êρ‖ = ‖êα‖ = ‖êδ‖ = 1 .

Thus the squared norms of the heliocentric position and velocity are

‖r(ρ)‖2 = ρ2 + 2ρ q · êρ + ‖q‖2 , (43)

‖ṙ(ρ, ρ̇)‖2 = ρ̇2 + 2ρ̇q̇ · êρ + ρ2
(

α̇2 cos2 δ + δ̇2
)

+ 2ρ
(

α̇ cos δq̇ · êα + δ̇q̇ · êδ
)

+ ‖q̇‖2 . (44)

We shall use the coefficients7

c0 = ‖q‖2
c1 = 2q̇ · êρ
c2 = α̇2 cos2 δ + δ̇2 = η2

c3 = 2α̇ cos δ q̇ · êα + 2δ̇ q̇ · êδ
c4 = ‖q̇‖2
c5 = 2q · êρ ,

(45)

and the polynomial expressions

2T⊙(ρ, ρ̇)
def
= ‖ṙ(ρ, ρ̇)‖2 = ρ̇2 + c1ρ̇+ c2ρ

2 + c3ρ+ c4 ,

S(ρ)
def
= r2 = ρ2 + c5ρ+ c0 ,

W (ρ)
def
= c2ρ

2 + c3ρ+ c4 . (46)

By substituting the last expressions in (39), condition (40) reads

2E⊙(ρ, ρ̇) = ρ̇2 + c1ρ̇+W (ρ)− 2k2/
√

S(ρ) ≤ 0 .

To have real solutions, the discriminant of E⊙ as a polynomial of degree 2 in ρ̇must be non-negative,
i.e.

c21/4−W (ρ) + 2k2/
√

S(ρ) ≥ 0 .

7To obtain more accurate results, the position q and the velocity q̇ at time t̄ should be computed consistently
with the interpolation used for êρ, according to a suggestion by Poincaré.
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Let us set γ = c4 − c21/4 and define P (ρ) = c2ρ
2 + c3ρ+ γ. Then condition (40) implies

2k2/
√

S(ρ) ≥ P (ρ) . (47)

The polynomial P (ρ) is non-negative for each ρ: it is the opposite of the discriminant of T⊙(ρ, ρ̇)
as a polynomial in the variable ρ̇. T⊙ is a kinetic energy and is non-negative, thus its discriminant
is non-positive. Also S(ρ) is non-negative, thus we can square both sides of (47) and obtain the
polynomial inequality of degree 6

4k4 ≥ V (ρ) = P 2(ρ)S(ρ) =

6
∑

i=0

Ai ρ
i , (48)

with coefficients

A0 = c0γ
2 , A1 = c5γ

2 + 2c0c3γ , A2 = γ2 + 2c3c5γ + c0(c
2
3 + 2c2γ) ,

A3 = 2c3γ + c5(c
2
3 + 2c2γ) + 2c0c2c3 ,

A4 = c23 + 2c2γ + 2c2c3c5 + c0c
2
2 , A5 = c2(2c3 + c2c5) , A6 = c22 .

The region defined by (40) has at most two connected components. In Figure 4 we plot the level
curves of E⊙ for positive, zero and negative values, showing the qualitative change in the topology
of these sets.
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Figure 4: Three level curves of E⊙, including the zero level curve, and E⊕ = 0 (dashed curve) in
the plane (ρ, ρ̇).

It is useful to introduce another constraint to exclude objects at an arbitrarily small distance
from the observer. We can make different choices, for example

1) assign an inner boundary by requiring that A is not a satellite of the Earth, i.e. by imposing
a condition on the geocentric energy E⊕(ρ, ρ̇);

2) set a minimal distance by requiring that A is not too small. This is possible if photometric
measurements are available.
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Excluding satellites of the Earth

We describe the region defined by the condition E⊕(ρ, ρ̇) ≥ 0. Assume for simplicity that the
observations are geocentric: q⊕ is the heliocentric position of the Earth center, ρ = ρêρ is the
geocentric position of the observed body, and r = ρ+ q⊕. The geocentric energy is

E⊕(ρ, ρ̇) =
1

2
‖ρ̇‖2 − k2µ⊕

1

ρ
≥ 0 , (49)

where µ⊕ is the ratio between the mass of the Earth and the mass of the Sun. By using ‖ρ̇(ρ, ρ̇)‖2 =
ρ̇2 + ρ2 η2, where η =

√

α̇2 cos2 δ + δ̇2 is the proper motion, (49) becomes

ρ̇2 + ρ2 η2 − 2k2µ⊕

1

ρ
≥ 0 ,

that is

ρ̇2 ≥ G(ρ) , with G(ρ) =
2k2µ⊕

ρ
− η2ρ2 . (50)

Note that G(ρ) > 0 for 0 < ρ < ρ0 =
3

√

(2k2µ⊕)/η2.
However, condition (49) is meaningful only inside the sphere of influence of the Earth, otherwise

the dynamics of A is dominated by the Sun, not by the Earth. Thus we need to introduce the
condition

ρ ≥ RSI = a⊕
3

√

µ⊕/3 , (51)

where RSI is the radius of the sphere of influence, a⊕ is the semimajor axis of the Earth. To
exclude the satellites of the Earth we have to assume that either (49) or (51) apply. If ρ0 ≤ RSI

the region of the satellites to be excluded is defined simply by eq. (50); this occurs for

ρ30 = 2k2µ⊕/η
2 ≤ R3

SI = a3⊕ µ⊕/3

thus, taking into account Kepler third law a3⊕ n2
⊕ = k2, with n⊕ the mean motion of the Earth,

we have ρ0 ≤ RSI if and only if η ≥
√
6 n⊕. Otherwise, if ρ0 > RSI , the boundary of the region

containing satellites of the Earth is formed by a segment of the straight line ρ = RSI and the two
arcs of the ρ̇2 = G(ρ) curve with 0 < ρ < RSI , as in Figure 5.

To understand the shape of the boundary of the Earth satellites region we need to find possible
intersections between the curves E⊕ = 0 and E⊙ = 0. However, if E⊕ is computed in a geocentric
approximation, these intersections are physically meaningful only if they occur for R⊕ < ρ < RSI ,
that is, during a close approach to the Earth, but above its physical surface. We can prove that
for R⊕ ≤ ρ ≤ RSI the condition E⊕(ρ, ρ̇) ≤ 0 implies E⊙(ρ, ρ̇) ≤ 0.

This result shows that the region of solar system orbits excluding the satellites of the Earth
does not have more connected components than the region satisfying condition (40) only. This
happens only for particular values of the mass, radius and orbital elements of the Earth, and it is
not a general property of whatever planet.

The tiny object boundary

An alternative method to assign a lower limit to the distance is to impose that the object is not
very small and very close to the Earth. We assume that the size is controlled by setting a maximum
value for the absolute magnitude H :

H(ρ) ≤ Hmax . (52)
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Figure 5: The qualitative features of the region of heliocentric orbits in the (log10 ρ, ρ̇) plane: by
combining conditions (40), (49), (51) and ρ ≥ R⊕, we are left with the domain sketched. The
log10 ρ scale is used to enhance the part of the region with small values of ρ.

If an average value h of the apparent magnitude is available, then H can be computed from h
using the relation

H = h− 5 log10 ρ− x(ρ) , (53)

where the correction x(ρ) accounts for the distance from the Sun and the phase effect. For small
values of ρ we can approximate x(ρ) with a quantity x0 independent of ρ. However, also for larger
values of ρ this is an acceptable approximation. In this approximation, condition (52) becomes

log10 ρ ≥
h−Hmax − x0

5

def
= log10 ρH ,

that is, given the apparent magnitude h, we have a minimum distance ρH = ρ(Hmax) for the
object to be of significant size. For example, using Hmax = 30 we have ρ ≥ 0.01 AU if h = 20, and
ρ ≥ 0.001 AU if h = 15. The region satisfying condition (52) is just a half plane ρ ≥ ρH : we call
tiny object boundary the straight line ρ = ρH .

Definition of admissible region

We can choose the inner boundary according to the type of objects whose orbit we want to
determine, e.g. near-Earth asteroids, trans-Neptunian objects.

As an example, searching for objects in heliocentric orbit with significant size we can assume
that ρ(Hmax) > RSI . Given an attributable A and a maximum value for the absolute magnitude
Hmax, we define as admissible region the set

D(A) = {(ρ, ρ̇) : ρ ≥ ρH , E⊙(ρ, ρ̇) ≤ 0} . (54)

The admissible region consists of at most two compact connected components. Its boundary
has an outer part, given by arcs of the curve E⊙(ρ, ρ̇) = 0, symmetric with respect to the line
ρ̇ = −c1/2. The boundary has also an inner part consisting, in the simplest case, of a segment of
the line ρ = ρ(Hmax). For smaller objects, with ρ(Hmax) < RSI , the inner boundary has a more
complex shape, like the one shown in Figure 5.
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Delaunay’s triangulations

To sample the admissible region we start by sampling its boundary, selecting points that are as
possible equispaced on the boundary. Then we construct a Delaunay triangulation of the region,
that is a sampling with the properties described below.

Consider the polygonal domain D̃ defined by connecting with edges the sample of boundary
points of the admissible region D. A triangulation of D̃ is a pair (Π, τ), where Π = {P1, . . . , PN}
is a set of points (the nodes) of the domain, and τ = {T1, . . . , Tk} is a set of triangles with vertexes
in Π such that:

(i)
⋃

i=1,k Ti = D̃ ;

(ii) for each i 6= j the set Ti
⋂

Tj is either empty or a vertex or an edge of a triangle .

To each triangulation (Π, τ) we can associate the minimum angle, that is the minimum among the
angles of all the triangles Ti. Among all possible triangulations of a convex domain the Delaunay
triangulation is characterized by these properties:

(i) it maximizes the minimum angle;

(ii) it minimizes the maximum circumcircle;

(iii) for each triangle Ti, the interior part of its circumcircle does not contain any nodes of the
triangulation.

These properties are all equivalent for convex domains.
If, in addition to the set of points Π, we give as input also some edges PiPj, for example the

boundary edges of D̃, we refer to the corresponding triangulation containing the prescribed edges
as a constrained triangulation.

The domain D̃ is in general not convex: in this case we need to give as input the edges along
the boundary. Then there still exists a constrained triangulation such that (i), (ii) hold, called
constrained Delaunay triangulation, but property (iii) is not guaranteed.

The definition of Delaunay’s triangulation uses distances and angles, thus it depends on the
metric selected for the space (ρ, ρ̇). In particular we can select a strictly increasing function f(ρ)
and perform the triangulation of the admissible region with the metric ds2 = df(ρ)2 + dρ̇2, i.e., we
can work in the plane (f(ρ), ρ̇) endowed with the Euclidean metric. If our purpose is to search for
objects in a particular portion of the (ρ, ρ̇) space, then we can use a metric selected ad hoc. For
example, to enhance the region near the Earth we can use f(ρ) = log10(ρ), as in Figure 5.

Recursive attribution

Each node of the admissible region corresponds to an orbit to which we can assign a degenerate
covariance matrix. This orbit and its covariance can be propagated to the time of a second
attributable in order to check the compatibility of both sets of observations. In this procedure
we can take advantage of the concept of Line of Variation to perform constrained differential
corrections.
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Figure 6: Triangulated admissible region in the plane ρ, ρ̇ for the asteroid 2003 BH84. The units
are AU, AU/yr and the coordinates of the asteroid are marked with a circled cross.

6.2 Preliminary orbits with the two-body integrals

It is well known that Kepler’s problem

r̈ = −µ r

|r|3 , r ∈ R
3, µ > 0

has the following integrals of motions:

c = r× ṙ (angular momentum) ,

E =
1

2
|ṙ|2 − µ

|r| (energy) ,

L =
1

µ
ṙ× c− r

|r| (Laplace-Lenz vector) .

(55)

The integrals above give only 5 independent scalar conservation laws, in fact we have the relations

L · c = 0 , 2|c|2E + µ2(1− |L|2) = 0 .

The linkage problem can be written using polynomial equations defined by some integrals of
Kepler’s problem. This approach together with the algebraic elimination of variables allows us to
have a global control on the solutions.

The use of the integrals c, E to write equations for the linkage problem was first suggested
in 1977. The same equations have been reconsidered in 2010, and solved by means of algebraic
methods.

In another recent work different equations are considered, writing a suitable projection of the
Laplace-Lenz vector in place of the energy.

To set up the equations of the linkage problem we write the Keplerian integrals as function of
(ρ, ρ̇). The angular momentum is

c(ρ, ρ̇) = r× ṙ = Dρ̇+ Eρ2 + Fρ+G (56)
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with
D = q× êρ , E = α̇ cos δêρ × êα + δ̇êρ × êδ ,

F = α̇ cos δq× êα + δ̇q× êδ + êρ × q̇ , G = q× q̇ ,

where êρ, êα, êδ are unit vectors depending only on α, δ, defined as in Section 6.1. Thus D,E,F,G
depend only on the attributable A and on the motion of the observer q, q̇ at the mean time t̄.

The dependence of the energy function

E =
1

2
|ṙ|2 − µ

|r|

on ρ, ρ̇ is described in Section 6.1.
The Laplace-Lenz vector is given by

µL(ρ, ρ̇) = ṙ× c− µ
r

|r| =
(

|ṙ|2 − µ

|r|
)

r− (ṙ · r)ṙ

where
|r| = (ρ2 + |q|2 + 2ρq · êρ)1/2 ,
|ṙ|2 = ρ̇2 + (α̇2 cos2 δ + δ̇2)ρ2 + 2q̇ · êρρ̇+ 2q̇ · (α̇ cos δêα + δ̇êδ)ρ+ |q̇|2 ,
ṙ · r = ρρ̇+ q · êρρ̇+ (q̇ · êρ + q · êαα̇ cos δ + q · êδ δ̇)ρ+ q̇ · q .

First we describe the algorithm that employs the angular momentum and energy integrals.
Given two attributables A1,A2 at times t̄1, t̄2, equating the angular momentum at the two times
we obtain

D1ρ̇1 −D2ρ̇2 = J(ρ1, ρ2) (57)

where
J(ρ1, ρ2) = E2ρ

2
2 − E1ρ

2
1 + F2ρ2 − F1ρ1 +G2 −G1 .

Hereafter we use the indexes 1, 2 to denote the quantities defined above at times t̄1, t̄2.
By scalar multiplication of (57) with D1×D2 we perform the elimination of the variables ρ̇1, ρ̇2.

This yields

q(ρ1, ρ2)
def
= D1 ×D2 · J(ρ1, ρ2) = 0 .

Now we use the conservation of the energy. By vector multiplication of (57) with D1 and D2,
projecting on D1 ×D2, we obtain

ρ̇1(ρ1, ρ2) =
(J×D2) · (D1 ×D2)

|D1 ×D2|2
, ρ̇2(ρ1, ρ2) =

(J×D1) · (D1 ×D2)

|D1 ×D2|2
.

Substituting into E1 = E2, rearranging the terms and squaring twice we obtain the polynomial
equation p(ρ1, ρ2) = 0, with total degree 24. We consider the semi-algebraic problem

p(ρ1, ρ2) = 0 , q(ρ1, ρ2) = 0 , ρ1, ρ2 > 0 . (58)

We can write

p(ρ1, ρ2) =

20
∑

j=0

aj(ρ2) ρ
j
1 , q(ρ1, ρ2) = b2 ρ

2
1 + b1 ρ1 + b0(ρ2)

for some coefficients ai, bj , depending only on ρ2.
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Now we eliminate the variable ρ1. Consider the resultant Res(ρ2) of p, q with respect to ρ1: it
is a degree 48 polynomial defined as the determinant of the Sylvester matrix























a20 0 b2 0 . . . . . . 0
a19 a20 b1 b2 0 . . . 0
...

... b0 b1 b2 . . .
...

...
... 0 b0 b1 . . .

...

a0 a1
...

...
... b0 b1

0 a0 0 0 0 0 b0























.

The roots of Res(ρ2) give us all the ρ2 components of the solutions of (58). The computation
of the solutions can be done as follows:

i) compute the positive roots ρ2 of Res(ρ2);

ii) for each root find the corresponding values of ρ1, ρ̇1, ρ̇2;

iii) discard the spurious solutions, obtained by squaring;

iv) compute the related Keplerian orbits at times t̃i = t̄i −
ρi
c
, i = 1, 2, corrected by aberration,

with c the speed of light.

One method to select among alternative solutions is to use compatibility conditions. The knowledge
of the angular momentum vector and of the energy at a given time yields the values of

a, e, I,Ω .

From c1 = c2, E1 = E2 we obtain the same values of a, e, I,Ω at times t̃1, t̃2, but we must check the
compatibility conditions

ω1 = ω2 , ℓ1 = ℓ2 + n(t̃1 − t̃2) , (59)

where n is the mean motion.
To take into account the errors in the observations we can consider the map

(A1,A2)
Ψ7→ (A1, ρ1, ρ̇1,∆1,2) , ∆1,2 = (∆ω,∆ℓ)

giving the orbit at time t̃1, and the difference in ω, ℓ. Then we check whether ∆1,2 = 0 is compatible
with the observational errors by covariance propagation through the map Ψ. This algorithm also
allows to define covariance matrices for the preliminary orbits that we compute.

It is possible to reduce the algebraic degree of the linkage problem by writing different equations
(i.e. using different integrals): we select a suitable component of the Laplace-Lenz vector in place
of the energy. Given A1,A2 we equate L1,L2 projected along v = êρ2 × q2:

L1(ρ1, ρ̇1) · v = L2(ρ2, ρ̇2) · v . (60)

We have
(

|ṙ1|2 −
µ

|r1|
)

(r1 · v)− (ṙ1 · r1)(ṙ1 · v) = −(ṙ2 · r2)(ṙ2 · v) .

Rearranging the terms and squaring we obtain
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p̃(ρ1, ρ2)
def
= µ2(r1 · v)2 − |r1|2

{[

|ṙ1|2r1 − (ṙ1 · r1)ṙ1 + (ṙ2 · r2)ṙ2
]

· v
}2

= 0 .

p̃ is a polynomial of total degree 10 in ρ1, ρ2, therefore the system

p̃(ρ1, ρ2) = 0 , q(ρ1, ρ2) = 0 (ρ1, ρ2 > 0) (61)

has degree 20.
Taking two sets of observations of asteroid (99942) Apophis, at mean epochs t̄1 = 53175.59,

t̄2 = 53357.45 MJD, we show in Figure 7 the advantage of using equation (60) instead of the
conservation of the energy E .

−0.5 0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.5 0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 7: Comparison of the intersections of the algebraic curves computed for the linkage problem
in the plane (ρ1, ρ2). Left: curves defined by p̃ = 0 (solid) and q = 0 (dashed) in (61), using the
integral L · v. Right: curves defined by p = 0 (solid) and q = 0 (dashed) in (58), using E . With
kind permission from Springer.

We can choose among alternative solutions of the linkage problem also by means of the at-
tribution algorithm. Let E1 be a set of orbital elements at time t1, with covariance matrix Γ1.
Propagate orbit and covariance to the epoch t̄2 of A2, with covariance ΓA2

. Then extract a pre-
dicted attributable Ap, at time t̄2, with covariance ΓAp

. We can compare Ap,ΓAp
with A2, ΓA2

by
defining an identification penalty χ4, that gives the price to pay to assume that the observations
of both attributables belong to the same celestial body.
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Glossary

Admissible region: compact set of data in the plane (ρ, ρ̇) of the radial distance and velocity of
an observed asteroid. It is defined by imposing dynamical and physical constraints on the asteroid.
Asteroid survey: systematic scan of the sky, with a telescope, to produce an asteroid catalog.
Attributable: 4-dimensional vector giving the angular position and angular velocity of an asteroid
on the celestial sphere at a certain time.
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Differential corrections: Iterative algorithm that implements the least squares method.
Identification: to establish that two sets of asteroid observations belong to the same celestial
body.
Line of Variation: one-dimensional set, in the orbital elements space, representing a simplified
model for the confidence region.
Linkage: identification of two very short arcs of asteroid observations as belonging to the same
celestial body.
Preliminary orbit: orbit to be used as starting guess for the differential corrections.
Very short arc: small set of asteroid observations, usually referred to the same observing night,
that is used to define an attributable.
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