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ABSTRACT

Recently, several new tools and techniques have been developed which allow for robust
detection and prediction of future planetary encounters and potential impacts by Near-Earth
Asteroids (NEAs). We review the recent history of impact prediction theory, and cover the
classical linear techniques for analyzing encounters, consisting of precise orbit determination
and propagation followed by target plane analysis. When the linear approximation is unreliable
there are various suitable approaches for detecting and analyzing very low probability encounters
dominated by strongly nonlinear dynamics. We also describe an analytic approach that can
provide valuable insight into the mechanisms responsible for most encounters. This theory is
the foundation of the impact monitoring systems, the ones currently operational and the ones
being developed.

1. INTRODUCTION

The last ten years have seen tremendous progress in our ability to assess the risk that an
asteroid or comet might collide with the Earth. The catalyst for much of the increased interest in
these Near-Earth Objects (NEOs) was a request by the U.S. Congress in 1990 that NASA undertake
two workshop studies, one to study ways of increasing the discovery rate of these objects, and
another to study the technologies and options for deflecting or destroying an NEO if it should be
found to pose a danger to life on Earth. The report from the first of these workshops proposed an
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international NEO survey program called Spaceguard, borrowing the name from a similar project
in Sir Arthur C. Clarke’s science fiction novel Rendezvous with Rama (Morrison 1992). The report
noted the need for development of new procedures and software to “assess the uncertainty [in
Earth-object distance] for any future close approaches.”

The exploding state of knowledge of the impact hazard problem in the early 1990s was well
captured by an earlier monograph in this series, Hazards due to Comets and Asteroids (Gehrels et al.
1994). In this volume, Bowell and Muinonen (1994) suggested the use of the Minimum Orbital
Intersection Distance (MOID) for close encounter analyses, and defined the class of Potentially
Hazardous Asteroids (PHAs) as those asteroids having a MOID with respect to Earth of less than
0.05 AU. In the same volume, Chodas and Yeomans (1994) described a system for predicting future
asteroid and comet close approaches, including the computation of close approach uncertainties and
impact probabilities via linear methods. The impact probability computation via linear methods
in the impact plane was introduced in the context of asteroid and comet collisions by Chodas
(1993). The method saw an immediate application when comet Shoemaker-Levy 9 was found to
be on a collision course with Jupiter: within a few days of the impact announcement, the impact
probability was calculated to be 64% (Yeomans and Chodas 1993), and it reached 95% only a week
later. Somewhat different linear methods for computing collision probabilities by monitoring the
distance between the Earth and the asteroid uncertainty ellipsoid were described by Muinonen
and Bowell (1993). Chodas and Yeomans (1996) performed an early non-linear analysis of orbital
uncertainties in an investigation of the pre-breakup orbital history of comet Shoemaker-Levy 9.

In March 1998, the problem of computing impact probabilities received a great amount of press
attention because of a prediction by Brian Marsden of the Smithsonian Astrophysical Observatory
that the sizeable asteroid 1997 XFi; would make an extremely close approach to the Earth in
the year 2028, and a widely misunderstood statement that a collision was “not entirely out of the
question” (Marsden 1999). A linear analysis of the impact probability was immediately performed
by one of us (PWC) and Donald K. Yeomans of the Jet Propulsion Laboratory (JPL), and the
chance of collision in 2028 was found to be essentially zero. When pre-discovery observations from
1990 were found the next day and included in the orbital solution, they only served to confirm that
there was no possibility of collision in 2028 (Chodas and Yeomans 1999b; Muinonen 1999).

Three months after the 1997 XFq; story hit the news, Marsden opened a new area of inves-
tigation by suggesting that prior to the discovery of the 1990 observations, 1997 XF1; had in fact
a small possibility of collision in the decade or so after 2028 because the deep close approach in
2028 could alter the asteroid’s orbital period to bring it back to Earth several orbits later. Lin-
ear methods were inadequate to analyze these later collision possibilities because the 2028 close
approach introduced a strong nonlinearity into 1997 XF';;’s predicted motion. Primarily to inves-
tigate the post-2028 impact scenarios of 1997 XF11, two groups independently and simultaneously
developed new nonlinear methods for analysis of collision possibilities much farther into the future
than possible with the linear methods. Chodas and Yeomans (1999a) applied a Monte Carlo tech-
nique to sample the linear six-dimensional confidence region at the epoch of observation, and then
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numerically integrate over the time span of interest using the nonlinear equations. Milani et al.
(1999, 2000b) applied the multiple solutions approach to sample the central line of variations of the
non-linear confidence region at epoch, and numerically integrate over the time span of interest in
a similar fashion. The two methods yielded very similar results when applied to the hypothetical
1997 XF;;1 case without the pre-discovery observations, obtaining an impact probability on the
order of 10 for the year 2040 (Chodas and Yeomans 1999c; Milani et al. 2000b).

In early 1999, Milani et al. applied these same techniques to the case of asteroid 1999 ANjg
while developing the theory of resonant and non-resonant returns. They also identified for the
first time an impacting solution consistent with a complete set of NEA observations, although the
collision probability was very small (Milani et al. 1999), a result that was confirmed by independent
investigators. As more observations of 1999 ANy became available, both the Pisa and the JPL
group identified two much more likely impacting scenarios for the years 2044 and 2046, with prob-
abilities on the order of 10, the highest seen to that date. Observations later found on archival
plates drove these probabilities to essentially zero.

In mid-1999 a second asteroid, 1998 OX,, was determined (based upon all available obser-
vations) to have some potential collisions (Milani et al. 2000a). Unfortunately this asteroid had
become lost, due to its faintness and involvement with the Milky Way, despite the concerted efforts
of numerous observers around the time of discovery, and there was no practical way to obtain
additional observations to refine the collision hazard posed by this object. Milani et al. (2000a)
proposed a method, based upon the concept of a negative observation, for ruling out the known
collision possibilities without requiring the recovery of 1998 OX4, and their approach has been suc-
cessfully implemented (Andrea Boattini, private communication). In their reassessment of the case
Muinonen et al. (2001) found additional possibilities of collision, generally confirming the results
of Milani et al.. However, this case highlighted the need for automatic collision monitoring since
it is highly likely that, had the collision potential been recognized at the time of the discovery,
the resources needed to observe this recently discovered PHA and refine its orbit would have been
forthcoming. In response, the CLOMON monitoring system (Chesley and Milani 2000) was devel-
oped at the University of Pisa, and it has detected numerous impact possibilities among recently
discovered asteroids. Importantly, all of these threatening events (apart from some involving very
small bodies) were eventually eliminated due to additional observations, which in some cases came
as a direct result of the CLOMON impact detection. CLOMON was, however, a prototype system
with an uncertain level of completeness. At the time of this writing more advanced monitoring
systems, based on the principles described in this chapter, are under independent development at
the University of Pisa and at JPL.

This chapter is organized to give an overview of the ideas and theories needed to reliably detect
and analyze potentially threatening Earth-asteroid encounters. The next section describes the most
important tool used in encounter analysis, the target plane. Then, in Sec. 3, we describe the linear
theory of orbit determination and encounter analysis, and we also discuss the limitations of the
linear theory. In Secs. 4 and 5 we describe the various nonlinear sampling and analysis methods
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that are available. Sec. 6 presents an analytic approach that can be used to understand the chaotic
nature of the problem in terms of resonant returns and keyholes. Finally, we close in Sec. 7 by
listing a few of the more significant open problems that remain.

2. PLANETARY ENCOUNTERS
2.1. Target Planes

The primary means of studying planetary encounters, whether they be with spacecraft or minor
planets, continues to rely on the concept of a target plane. Here we use this term generically to
encompass any of the various planes and coordinate systems that may be used to study a specific
encounter of an asteroid with the Earth!. In this sense, a target plane is simply a geocentric
plane oriented normal to the asteroid’s geocentric velocity vector. The point of intersection of
the asteroid trajectory with the target plane provides considerable insight into the nature of an
encounter, especially when uncertainty is carefully taken into account.

While the fundamental concept is rather straightforward, there are several issues we must
address that can unfortunately obscure this simplicity. In general, either of two distinct planes
and several coordinate systems can be used. The two available target planes pass under various
names through the published literature, which is occasionally confusing, but for the purposes of
this development we define the following usage:

Target Plane or b-plane. The b-plane is the classical target plane used in astrodynamics since
the 1960’s (e.g., Kizner 1959), and by Greenberg et al. (1988) in the framework of Opik’s
theory of close encounters (Opzk 1976). It is oriented normal to the incoming asymptote of
the osculating geocentric hyperbola, or, equivalently, it is oriented normal to the unperturbed
relative velocity v. The b-plane is named in reference to the so-called impact parameter b,
which is the distance from the geocenter to the intercept of the asymptote on this plane, i.e.,
the minimum encounter distance along the unperturbed trajectory.

Modified Target Plane (MTP). The MTP is modified in the sense that it is oriented normal
to the geocentric velocity at the point of closest approach along the actual trajectory. Rather
than noting the position of the intersection of the unperturbed orbit, as is done with the b-
plane, we mark the intersection of the perturbed asteroid trajectory with the target plane when
using the MTP. The term “MTP” was introduced by Milani and Valsecchi (1999), although
the concept was introduced earlier (e.g., Chodas and Yeomans 1994).

The main difference between the two types of target planes arises from the fact that the

1For simplicity we limit this development to asteroid encounters with the Earth. The extension to comet encounters
(where nongravitational forces must be considered) or to encounters with other planets is straightforward.
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deflection of the asteroid by the planet or gravitational focusing is directly indicated with the use
of the MTP, while the gravitational focusing is in some sense hidden when the b-plane is used. For
encounters taking place at high relative velocities, or at large distances, the deflection will be very
small and the distinction between the two planes becomes negligible.

One difficulty that arises from the visibility of gravitational focusing on the MTP is that
nearby trajectories are deflected by different amounts. When the deflection is significant, as is
typically the case for very deep encounters or those with low relative velocities, this leads to
substantial nonlinearity in the mapping from the asteroid’s pre-encounter state onto the impact
plane. Moreover, the orientation of the plane itself can change significantly from modest changes
to the asteroid trajectory, and this poses another important source of nonlinearity. Of course, for
very slow encounters that lead to temporary capture of the asteroid, an asymptote does not exist,
and therefore the b-plane approach fails; in such cases the MTP must be used.

This allows us to rate the utility of the b-plane and MTP according to the deflection caused
by the encounter. For very low deflections the two approaches are essentially indistinguishable,
while for moderate deflections the preferred plane depends upon the circumstances and purposes
at hand. For relatively large deflections the greater nonlinearity of the MTP causes the b-plane to
be generally superior, but for very low relative velocities (leading to capture into elliptical orbits)
only the MTP is available.

2.2. Target Plane Coordinates

Conventionally, the coordinate origin is at the geocenter but the orientation of the coordinate
system on the target plane is arbitrary. The reference system has been variously fixed by aligning
the axes so that one of the nominal target plane coordinates is zero (i.e., placing the asteroid on
an axis), or by aligning a coordinate axis with either the projection of the Earth’s polar axis (e.g.,
Figs. 1 and 2 in later sections) or the projection of the Earth’s heliocentric velocity (e.g., Fig. 3).

One of the most important objectives in a target plane analysis is to determine whether a
collision is possible and, if not, then to decide how deep the encounter will be. When using the
MTP we plot the position of the asteroid at the point of closest approach, hence this information
is immediately available. On the other hand, with the b-plane we obtain the minimum distance
of the unperturbed trajectory at its closest approach point, which is the impact parameter b. The
impact parameter alone does not reveal whether the perturbed trajectory will intersect the figure
of the Earth, but this information can be extracted by scaling the Earth radius rq according to
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With this we can say that a given trajectory impacts if b < bgy, and not otherwise. An alternative
to simply scaling the figure of the Earth on the b-plane is to scale b while leaving the figure of the
Earth at rg. For any single orbit this is obviously equivalent, but when computing the coordinates
of slightly different asteroids, each with a slightly different v, the scaling is not uniform (Chodas
and Yeomans 1999c).

A convenient target plane reference system (&,7,() is obtained by aligning the negative (-axis
with the projection of the Earth’s heliocentric velocity vg,, the positive n-axis with the geocentric
velocity (i.e., normal to the b-plane), and the positive £-axis in such a way that the reference
system is positively oriented. With this frame of reference the target plane coordinates (¢,()
indicate the cross track and along track miss distances, respectively. In other words, { is the
distance by which the asteroid is early or late for the minimum possible distance encounter. The
associated early/late timing of the target plane crossing (n = 0) is At = (/(vg sinf), where 6 is
the angle between v, and vg. On the b-plane the £ coordinate is the minimum distance that
can be obtained by varying the timing of the encounter. This distance, which is known as the
Minimum Orbital Intersection Distance (MOID), is equivalent to the minimum separation between
the osculating ellipses, without regard to the location of the objects on their orbits. We note that
this interpretation of the target plane coordinates is valid only in the linear approximation, and
can break down for distant encounters (e.g., beyond several lunar distances).

Whatever target plane or coordinate frame is used, the idea that an asteroid can avoid an
impact either through being off time or by having an orbit that does not even intersect the Earth
is important. To have an impact the object must have a small enough MOID and be on time for
the collision. With this in mind we can characterize an encounter quite well given only the MOID
and At. The MOID, which is strictly a function of the osculating elements of the asteroid and
Earth, can be computed in various ways, with the numerical approach of Sitarski (1968) being the
most widely used. A recently developed semianalytic approach (Gronchi 2001) can be more robust,
with better handling of the cases of multiple local minima of the distance between the two orbits
(so-called local MOIDs).

3. LINEAR ENCOUNTER THEORY
3.1. Least Squares Orbit Determination

The details of the orbit determination process are not within the scope of this presentation: the
readers can consult the chapter on this subject in this volume, by Bowell et al.. However, we do need
to touch a few of the key ideas of estimation theory to establish our notation and terminology. First,
we let the initial conditions at some epoch ¢y for the asteroid under consideration be described by
the six-dimensional vector X of orbital elements. The observation residuals p = p(X) are a function
of the six orbital elements, and they form an m-dimensional vector where m > 6 is the number of
(scalar) observations.
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The weighted least squares method of orbit determination seeks to minimize the weighted RMS
of the residuals p, so we define the cost function

1
Q= —pTWP ’
m

where W is a square, symmetric (though not necessarily diagonal) matrix that should reflect the a
priori RMS and correlations of the observation errors. We denote the dependence of the residuals
on the elements by

dp
B=—(X
ax (%)
where B is an m x 6 matrix. Then we can compute the derivative of the cost function
0Q 2 ¢
— =—p WB.
ax — m”

The stationary points of the cost function @) are solutions of the system of nonlinear equations
0Q/0X = 0, which are usually solved by some iterative procedure. The most popular is a variant
of Newton’s method, known in this context as differential corrections, with each iteration making
the correction X — AX — X, where

AX = (BTWB) 'BTw)p

This converges (normally) to the best-fitting or nominal solution X*, where AX = 0. We use the
usual terminology for the normal matriz Cx = BTW B, and covariance matriz Tx = C’)_(l. We
note that these matrices can be computed, not only for the nominal solution, but also for nearby
values of X, a point that will be put to use in Secs. 4.3 and 5.3 to handle nonlinear situations.

3.2. Orbital Confidence Region

The expansion of the cost function at a point X = X* 4+ AX in a neighborhood of X* is
1
R(X) = Q(X*) + — AXTCx AX +...= Q(X*) + AQ(X),

where the dots indicate higher order terms in AX plus a term containing the second derivative of
p (see Milani 1999). A confidence region is a region where the solutions are not too far from the
nominal, as measured by the penalty AQ. We shall indicate with Zx (o) the confidence ellipsoid
defined by the inequality

mAQ(X) ~ AXT Cx AX < o?.

If the confidence ellipsoid Zx (o), defined by the normal matrix Cx, is small enough (either
because the constraint is sufficiently strong, i.e., the eigenvalues of C'x are large, or because the
choice of o is sufficiently small) then the higher order terms in AQ(X) are also small, and Zx (o)
is a good approximation of the region in the space of orbital elements where the penalty AQ is
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less than 0?/m. In such cases we say that the linear theory of estimation holds; however, when
the confidence ellipsoid is larger, it can be an unreliable representation of the region containing
alternative solutions still compatible with the observations.

The confidence region is generally viewed as a cloud of possible orbits centered on the nominal
solution, where the density is greatest, and having a diffuse boundary. This is classically represented
by the multivariate Gaussian probability density, which reflects the likelihood that a given volume of
the confidence region will contain the true solution; this Gaussian distribution has X* as mean and
I'x as matrix containing the variances and the covariances of the distributions of the elements (hence
the name). But the use of the Gaussian probability density to describe the orbital uncertainty
assumes that the observational errors are Gaussian, and that W accurately reflects the observational
uncertainty. Indeed the extent of the confidence region is directly dependent upon the choice
of W, and therefore proper observation weighting is crucial for reliably determining the orbital
confidence region. However, given the fact that the error statistics for asteroid astrometry are rarely
characterized, and moreover are often not even Gaussian, it should be clear that the selection of
W is very problematic. This implies immediately that a careful probabilistic interpretation of the
orbital confidence region is elusive. See Carpino et al. (2001) for an expanded discussion of this
issue.

3.3. Linear Mapping to the Target Plane

Ultimately we wish to use the orbital confidence region to infer how close an asteroid could
pass during a given close approach, and, if collision is possible, to determine the probability of
collision. To do this we must map the orbital uncertainty onto the target plane.

The nonlinear function F' maps a given orbit X to a point Y on the target plane: Y = F(X).
This mapping consists of a propagation from an epoch near the observations tg to the time of
the encounter t1, followed by a projection onto the target plane. The Jacobian DF' linearly maps
orbits near the nominal to nearby points on the target plane: AY = DF(X*)AX . The matrix
DF is practically computed by propagating numerically the orbit together with the variational
equations (providing the state transition matrix), then projecting on the cross section defined by
the target plane. In the linear approximation, i.e., when the confidence region is small and F is
not too nonlinear, the confidence ellipsoid Zx (o) in the space of orbital elements maps onto the
target plane as an ellipse Zy (o) defined by

AYT Oy AY < 0?,

where Cy is the normal matrix describing the uncertainty on the target plane. As is well known
from the theory of Gaussian probability distributions (Jazwinski 1970), the covariance matrices of
the variables X and Y are related by

Cy' =Ty =DFTIx DFT .
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3.4. Linear Target Plane Analysis

Continuing under the assumption of linearity, we can characterize the target plane ellipse Zy
given only the nominal target plane coordinates Y, which marks the center of the ellipse, and the
associated covariance matrix I'y-, which indicates the size and orientation of the ellipse. The square
roots of the eigenvalues of I'y are the semimajor and semiminor axes of Zy, and the corresponding
eigenvectors indicate the orientation of the associated ellipse axes.

At this point we define several terms and variables associated with the target plane analysis
that are important for interpretation. First let d denote the distance from the asteroid to the
geocenter on the target plane, i.e., d = ||Y|| (on the b-plane we have d = b). Also let o denote the
angle between Y and the major axis of Zy. Then the minimum distance from the major axis to
the geocenter is dsin a. The semimajor and semiminor axes of Zy are termed the stretching A and
the semiwidth w, respectively, for reasons that we describe immediately.

When an encounter occurs several years or decades in the future, as is typical for the cases
considered to date, the orbital uncertainty is strongly dominated by uncertainty in the anomaly.
In such cases Zy is very long and slender and thus in the vicinity of the Earth the ellipse can
often be treated as a strip of constant width, which allows a convenient interpretation of the above
parameters. Specifically, under this “strip approximation,” when moving along the major axis,
or spine, of Zy we are essentially changing only the anomaly of the asteroid; thus the minimum
distance to the geocenter along the spine is the minimum encounter distance possible for any
variation in the timing of the encounter. But this is precisely the definition of the MOID, which
leads to the result that dsin « is a good approximation for the MOID in such situations. It follows
that the semiwidth w is essentially the uncertainty in the MOID. Furthermore, under the strip
approximation, the semimajor axis of Zy will be closely aligned with the projection of the Earth’s
heliocentric velocity on the target plane, i.e., it is aligned with the (-axis, if the reference system
on the target plane was chosen in this way. Its length, which is the stretching A, indicates the
amount by which the original ellipsoid Zx has been stretched by the propagation F', as well as the
timing uncertainty of the encounter At = A/(vg siné). In some cases, this strip approximation can
be inappropriate, generally because either the encounter is close to the time of the observations
to, leading to a less eccentric ellipse with errors not dominated by uncertainty in the time of the
encounter ¢;, or because the mapping F' is locally highly nonlinear and interrupted returns (see
Sec. 5.4) are present on the target plane. In the former case, a strictly linear analysis of the
encounter will typically be suitable, while in the latter case more sophisticated methods are needed
to detect and analyze the encounter.

To compute the impact probability one simply integrates the target plane probability density
prp over the cross-sectional area of the Earth (Chodas and Yeomans 1994). Within the Gaussian
formalism, the bivariate probability density prp can be computed as the product of two univariate
probability densities:

prp(01,02) = p(o1) p(o2) .
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In fact, the probability density p(c) is often assumed to be Gaussian, but can also be modeled as
a uniform density over the interval |o| < 3, so that p(o) = 1/6 within this interval and is zero
elsewhere; in the latter case the above formula is an approximation. Note that the value 3 for the
limits on ¢ is somewhat arbitrary and based upon experience; a rigorous statistical bound cannot
be computed without going through a rigorous weighting procedure as described in Section 3.2 and
in Carpino et al. (2001). Although the real error distribution of asteroid astrometry is clearly not
uniform, it has much stronger tails than a Gaussian distribution with formally derived standard
deviations. In practice, the true probability distribution lies somewhere between the two, and either
distribution will often suffice to obtain an order of magnitude estimate of the impact probability.

The recently proposed Palermo Technical Scale can be used to infer the significance of a
potential impact event, based on the impact probability, the size of the object, and the time until
the potential impact (Chesley et al. 2001). However, when the impact probability is very low, say
< 1079, it is practically indistinguishable from zero, and it is reasonable to say that an impact is
not possible. But, in a strictly theoretical sense, if the probability is computed within a Gaussian
formalism it is never zero, although the values can turn out to be meaninglessly small.

3.5. Limitations of Linear Theory

The linear theory described so far has little use when searching for low probability impact
solutions. It should, however, form a point of reference for applying the nonlinear approaches
described in the following sections, but it is very important to use this valuable tool in a critical
way, being aware of its limitations.

Nonlinearity arises from each stage in the computation procedure.

1. The least square fit for the elements X at epoch %y can be poorly constrained, so the ellipsoid
Zx (o) has some very long axes and is a poor approximation of the true confidence region.
This form of nonlinearity is often manifested by confidence regions that appear as curved
ellipsoids, or “bananoids.”

2. The integral flow is nonlinear, and the longer the time of propagation the more nonlinearity
accumulates. This means that even if the confidence ellipsoid was adequate at epoch %y, the
linear mapping of the covariance to a much later time t; might be very different from the
exact propagation of the orbits in the original confidence ellipsoid, which will often appear
folded, leading to interrupted returns as described by resonant return theory (Secs. 5.4 and
6).

3. The projection from the space of elements X onto the target plane Y is nonlinear, partly as
a result of the transformation from orbital elements to Cartesian coordinates. Additionally,
we note that for encounters with substantial timing uncertainty the target plane confidence
ellipse will have a very long major axis, and the true confidence region is actually curved



~11 -

by an amount corresponding to the curvature of the Earth’s heliocentric orbit, i.e., the true
confidence region deviates from the confidence ellipse to the same extent that the Earth’s
path deviates from a line. This problem is most severe for encounters with very large timing
uncertainty or with very low relative velocity.

Besides the more obvious limitation of linear theory, that the confidence region is not ellipsoidal,
there is also the important problem that only the encounters experienced by the nominal orbit are
even detected. And yet it is not unusual for the asteroid uncertainty to grow to a significant fraction
of the entire orbit, or even wrap all the way around the orbit one or more times by the time of a
potential collision, at which time the nominal orbit may be far from the Earth, even on the opposite
side of the Sun, and thus the linear analysis would not indicate any hazard at that time. Indeed,
threatening encounters cannot even be reliably detected unless the probability of impact rises above
~ 10~*, assuming that only encounters of the nominal orbit passing within 0.1 AU are considered.

We know that the curvature of the true confidence region, with respect to its linear approx-
imation, is essentially the curvature of the Earth’s heliocentric orbit. Thus the use of the linear
approximation cannot be accurate to 10~* AU when used over a distance larger than v10—4 = 102
AU. Thus as a rule of thumb for Earth encounters, if dcosa is not more than several lunar dis-
tances then the local curvature of the confidence region will have only a small effect and the value of
dsin a will be a reliable estimate of the MOID, to within a few Earth radii. This implies that even
encounters that are detected along the nominal orbit cannot be reliably recognized as threatening
using linear theories until the impact probability exceeds ~ 1073. For all of these reasons, the linear
analysis of the nominal trajectory is often inadequate or even erroneous, and nonlinear sampling
and analysis techniques are required.

4. VIRTUAL ASTEROIDS
4.1. Discretization of the confidence region

When an asteroid is discovered, we do not know “the orbit” of the real object, but rather
we can describe our knowledge by thinking of a swarm of virtual asteroids (VAs), with slightly
different orbits all compatible with the observations. The reality of the asteroid is shared among
the virtual ones, in the sense that only one of them is real, but we do not know which one. Since
the confidence region contains a continuum of orbits, each virtual asteroid is in turn representative
of a small region, i.e., its orbit is also uncertain, but to a much smaller degree. This smaller
uncertainty enables us to use for each VA some local algorithms, such as linearization, which would
be inappropriate over the entire confidence region. Note that the nominal orbit is just one of the
virtual asteroids, and is not extraordinary in this context.

The problem is then how to sample the confidence region by a limited number of VAs (in
practice, a number ranging between a thousand and several tens of thousands) in such a way that,
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if an impact is indeed compatible with the available information, a virtual impactor (VI) is found
among the selected virtual asteroids (Milani et al. 2000a). As before, a VI is not an isolated
collision orbit, but a representative of a small connected set in the confidence region in the initial
conditions space, formed by points leading to a collision with a given planet at approximately the
same time. Two main approaches have been devised to scan for VIs: the Monte Carlo methods,
and the line-of-variations methods.

4.2. Monte Carlo Sampling

The Monte Carlo (MC) methods directly use the probabilistic interpretation of the least squares
principle. Since the orbit determination process yields a probabilistic distribution in the space of
orbital elements, the distribution can be randomly sampled to obtain a set of equally probable
virtual asteroids. They will be more dense near the nominal solution, where the probability density
is maximum, and progressively less dense as the RMS of the residuals increases.

The random sampling needed to begin an MC test can be done in a simple way in the linear
case, where the probability density in the orbital elements space is well approximated by a Gaussian
with the mean value and covariance established by the nominal solution. In this case a standard
random number generator, providing a unit variance Gaussian distribution for a single variable,
can be used to generate a random sampling according to the Gaussian distribution in the elements
space (Chodas and Yeomans 1999c).

In the nonlinear case the probability density in orbital elements space is not given by an explicit
analytical formula and, although it theoretically exists, cannot be directly computed. Thus the
random sampling needs to take place in the space of observations, where the probability density
is assumed to be Gaussian according to some assumed error model, although establishing such
a model is a complex problem (Carpino et al. 2001). The orbit determination process is then
repeated, and the nominal solution for each set of modified observations is taken as a VA. Of
course this nonlinear MC procedure is computationally more expensive and should be used only
when a linear MC is inappropriate. In practice, however, the cases that require the nonlinear
MC treatment have very short observational arcs (typically much less than 30 days), and the time
interval over which to search for impactors is orders of magnitude longer, thus the computational
load of the orbit determination is much less than the propagation, and therefore the overhead of
the nonlinear MC method (with respect to the linear MC) is not important.

4.3. Line of Variations Sampling

Whereas the MC samples comprise a scattering of unrelated points covering the entire six-
dimensional confidence region, there are important computational advantages to sampling a reduced
subspace, e.g., a one-dimensional continuous line, that is hopefully representative of the entire



~—13 -

confidence region. For this purpose we can use the Line Of Variations (LOV), which is the line
of weakness of the orbit determination solution. In the linear case, when the confidence region is
well-represented by the confidence ellipsoid, the LOV is simply the major axis of the ellipsoid Zx,
which is defined by the eigendirection V; associated with the largest eigenvalue \; of the nominal
covariance matrix I'(X*) and its semilength is o1 = 4/A1. In the nonlinear case, for each solution
X in the confidence region we can compute the covariance matrix I'(X') and the corresponding unit
eigenvector V1 (X) satisfying some orientation rule, e.g., the component of V; along the axis of the
semimajor axis is positive. Then o1(X) Vi (X) is a well defined, smooth vector field, and the LOV
is the unique solution of the ordinary differential equation

dX
— =01 (X) V1(X

1o = X NX)

with initial conditions at the nominal solution X* for ¢ = 0. A numerical method to solve this
equation is described in (Milani 1999); more accurate methods have been developed for this and

other applications.

It is natural to sample the LOV with VAs spaced uniformly in the cumulative probability so
that each VA, representing a slice of the confidence region, has the same probability of representing
the true orbit. One approach is to assume a Gaussian distribution along the LOV, which leads to
short steps in the independent variable o near zero and progressively larger steps as one moves away
from the nominal solution. An alternate and more convenient approximation assumes a uniform
probability density up to some value (e.g., for —3 < ¢ < 3); under this hypothesis the sampling
will be uniform in o.

4.4. Discussion

Our ultimate objective in this development is to investigate the entirety of the orbital confidence
region to determine if there is any meaningful possibility of future collision. To this end, after
computing a set of virtual asteroids, one must propagate each of them forward to the end of
some time span of interest, which in most cases extends 50-100 years into the future. During the
propagations any planetary encounters are noted for later analysis.

The most straightforward means of searching for collisions is to note the VAs which impact
directly. With this very simple approach, if some of the VAs have close approaches within the
radius of the planet they are Virtual Impactors, and a simple estimate of the probability of impact
for that asteroid over the time span of interest is just the ratio of the number of VIs to the number
of VAs. The LOV method of generating VAs is ill-suited to this technique because such VAs cannot
impact unless the LOV directly intersects the Earth on the target plane, even though nearby off-
LOV solutions may impact. However, the Monte Carlo-derived VAs do sample the entire volume
of the orbital confidence region, and thus they can reveal all potential collisions, with a reliability
described by Poisson statistics. But this points to the main limitation of such a simple method: a
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VI can be reliably detected only if the impact probability is of the order of the inverse of the number
of VAs used. For example, to achieve a complete scan of the confidence region down to probabilities
of impact of ~ 107% requires the propagation of a few million orbits, presently requiring a week or
two of CPU time (for just one NEA), thus this approach is currently too inefficient to be generally
practical. For this reason it is necessary to apply some form of local analysis in the neighborhood
of the close approaches detected for each VA.

The LOV approach is especially favorable for local analysis because it is possible to exploit the
fact that the LOV VAs belong to a continuous one-dimensional set. Thus it is possible to interpolate
between the target plane points belonging to two consecutive VAs. As an example, if one VA passes
from the nodal point before the Earth, and the next consecutive one passes behind the Earth, by
continuity there must be a point on the LOV, corresponding to an intermediate value of o, such
that the encounter takes place at the MOID. Therefore the MOID of the VA orbit, at a time close
to (but before) the encounter, can be used as a criterion to identify any potentially threatening
encounters. In such cases some local analysis is needed to search for VI regions significantly smaller
than the VA sampling scale, thus permitting searches for VIs with a probability significantly lower
than the inverse of the number of VAs. Monte Carlo solutions are less well-suited to interpolation
because they are not ordered and are not constrained to a subspace. However, as was explained
in Sec. 3.4, the trace of the confidence region on the target plane is often a very narrow strip (see,
e.g., Figs. 1 and 2 in the next Section). In such cases this LOV interpolation can also be done using
MC-derived VAs, but one must take care to ensure that the interpolation is based on dynamically
similar VAs, as this is not generally clear a priori.

Even though interpolation along the LOV is generally very effective, we cannot be confident
that the LOV approach will detect all potential collisions. If some VIs lie well off the LOV, and are
separated from it by some strong nonlinearity (e.g., the MOID having been changed with respect
to the value along the LOV by some encounter at the other node or with another planet), then the
VAs selected along the LOV may fail to indicate some potentially threatening encounters. The MC
approach would, in principle, reveal such encounters. In the end we reach the conclusion that both
methods have important advantages, and a robust search procedure should use both methods in a
coherent hybrid scheme to ensure efficient and reliable detection of all VIs above a given probability.

5. NONLINEAR TARGET PLANE ANALYSIS
5.1. All the possible encounters

Whether the confidence region in initial orbital elements is sampled by a Monte Carlo method,
yielding a cloud of VAs, or via a Line Of Variations method, yielding a one-dimensional string
of VAs, the samples are all numerically integrated forward to some time horizon (typically 50—
100 years) and all close approaches to perturbing bodies within some detection threshold distance
are recorded. At each close approach, the time, distance, and geocentric position and velocity
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coordinates are noted. The close approach threshold distance used for the Earth is typically ~ 0.1-
0.2 AU.

As noted in the previous Section, a simple search for VIs among the sample VA orbits is not
adequate for finding all potential collisions because this approach is likely to miss low probability
impacts. Consider, for example, a lost asteroid: its confidence region quickly spreads along the
entire orbit, which for a typical NEA has a length of the order of 10 AU. Since the diameter of
the Earth is less than 10™* AU and the number of samples is typically of the order 10* or less, it
is unlikely that one of the virtual asteroids will impact directly, even if the orbits intersect and an
impact is possible. There is clearly a need to use a method of local analysis in the neighborhood
of a given VA to search for nearby VIs.

When ordered by time, the close approaches of all the VAs are seen to cluster around a series of
encounter times, for example when the Earth passes close to the asteroid’s nodal crossing point with
the asteroid nearby. We call the subset of VAs which approach the Earth around a given encounter
time a wirtual shower, since it is reminiscent of a stream of meteoroid particles encountering the
Earth. It is possible that the entire set of VAs form the shower, if, for example, the encounter time
is close to the initial time #y. Often, however, the confidence region is so spread out along the orbit
that only a small subset of VAs pass within the close approach detection threshold.

A shower can be decomposed into separate trails, which are subsets of closely related VAs,
each subset following a qualitatively different dynamical path to the encounter. Often, a shower
contains several different trails (Milani et al. 1999, Table 1). For example, an asteroid which is
lost by more than one full revolution can produce a shower containing trails in which VAs have
performed different numbers of revolutions around the Sun since time ¢3. Another situation occurs
when VAs go through a close approach which changes their orbital periods in such a way as to
bring them back for another close approach years later. Such resonant returns typically occur in
pairs characterized by different stretching (see Sec. 6).

When the individual approaches of a shower are plotted in the target plane, the separate trails
typically reveal themselves through differing characteristic MOID values (Fig. 1a). Even if the
initial confidence region was sampled with a Monte Carlo method, and the VAs are therefore off
the line of variations, the confidence regions of the trails are usually highly stretched, with widths
much narrower than the differences in MOIDs, and as a result, it is often possible to separate the
VAs of a shower into distinct trails simply by sorting on MOID (Chodas and Yeomans 1999c). This
method will not work, however, if the MOIDs of the trails are too similar. A more reliable method
of separating the VAs of a shower into separate trails is to sort and index them according to their
semimajor axis, the variation of which leads to the stretching in the target plane. This indexing is
immediate with the LOV method, and requires only minimal computation for MC samples. Then
the trails can be detected as sequences of n consecutive solutions X;, i = k,k+1,...,k+ (n — 1)
within a given shower (Fig. 1b).
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Fig. 1.— The January 2046 shower from the VAs of 1998 OX, plotted on the b-plane with VAs
derived from the (a) MC and (b) LOV methods. The Earth is represented to scale by the small
open circle in the center of each plot. One of the trails clearly intersects the Earth, thus a collision
is possible. Note that the axes in this figure are not the (£,() axes discussed in Sec. 2.2, thus the
trails are not aligned with the vertical axis.
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5.2. Filtering Trails

The points of a trail are just sample points of a continuous line more or less following the LOV,
and none need approach very close to the minimum possible distance for that trail. To decide if
an impact is possible, we need to determine precisely how close this trail approaches the Earth.
Since this new problem is computationally intensive, it is essential to apply some filter to discard
immediately the trails which clearly cannot collide. Two methods are available for this: selection
by MOID and linear analysis.

For each VA we can compute the MOID, reduced by the amount of gravitational focusing (as
described in Sec. 2.2 for bg) to obtain the perturbed minimum approach distance MOIDgp. To
determine whether an orbit will impact, the MOID should be computed based on the elements near
the time of the encounter, but not during the encounter or the effects of the encounter itself will
corrupt the MOID. However, lunar perturbations on the Earth cause high frequency fluctuations
in the MOID, with amplitudes on the order of one Earth radius. This effect can be minimized by
computing the MOID one lunar period before the encounter, but in general if MOIDgr < 27g
then a collision for that particular trail cannot safely be ruled out, while larger values of MOIDgp
do indicate that no impact can take place due solely to timing uncertainty. But the MOID itself
is uncertain due to the dispersion of the orbital elements at the time of the encounter (Bonanno
2000), so in the absence of MOID uncertainty information we must use a generous safety margin,
i.e., only ruling out collision when MOIDgr is greater than, say the lunar distance.

As an alternative, we can perform a linear target plane analysis for the closest approaching VA
found in each trail, and discard the cases in which an impact is well outside of the confidence ellipse.
Both methods have advantages and disadvantages. If the confidence ellipse on the target plane is
wider than our safety margin then the MOID of the VA we are considering is not representative
of the values the MOID could assume for initial conditions inside the confidence region but far
from the LOV. On the other hand, if the VA considered has only a shallow approach, e.g., further
than 0.02 AU as discussed in Sec. 3.5, the results of the linear analysis can be unreliable. The
best solution is to use information from both methods, such as using the value of the MOID and
allowing for the possibility of a decrease of its value by the 3-o width of the confidence ellipse.

Once a particular trail has been found to allow a very low minimum distance, i.e., too close
to rule out a collision, then we need to carefully determine the actual value of this minimum. We
consider first straightforward cases of trails with simple geometry, and then turn to complex cases
with strong nonlinearities.

5.3. Straightforward Encounters

When the VAs of a simple trail are projected onto the target plane, the (-coordinates of the
intercept points form a monotonic sequence proceeding from one side of the Earth to the other
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(i.e., spanning zero). To find the VA which makes the closest possible approach of a trail, several
methods may be used.

One technique is a variant of Newton’s method which starts from the solution X; that has the
closest approach among the VAs for the trail, and applies corrections to obtain a new VA with an
even closer approach. First, we compute the direction of the long axis of the target plane confidence
ellipse for X;, and then find the point Y;,;, along this line which is closest to the Earth in the target
plane. The desired correction in the target plane is therefore AY = Yy;, — F'(X;). We then need to
determine a change AX in the initial orbital elements about X; which satisfies the linear mapping

DF AX =AY .

Since DF maps from a six-dimensional space to a two-dimensional space, there is no unique solution,
but with the further constraint that the solution minimize the sum of squares of residuals, a unique
solution for AX can be found (Milani et al. 2000a). With the new solution X; + AX in hand,
we numerically integrate to the encounter time and compute the new close approach distance.
Since the direction of the correction AY is recomputed at each step, any curvature introduced
by gravitational focusing is accounted for. The iterations are stopped when the close approach
distances stop decreasing. This approach has proven very effective in most cases, but it is sometimes
prone to divergence, especially in strongly nonlinear cases, as will be described in Sec. 5.4.

Another method for finding the VA producing the minimum possible close approach along the
LOV uses the regula falsi interpolation method. Starting from two consecutive VAs having target
plane (-coordinates with opposite signs, Y; and Y;;;, we compute the point Y7, closest to the
Earth along the line between them. We then obtain a new VA by interpolating to the corresponding
point along the LOV between X; and X in the space of initial orbital elements, and iterate the
procedure. This approach does not require the computation of the confidence ellipse in the target
plane or the use of the linear mapping DF’, but it does require that the trail comprise at least two
VAs. This is in contrast to Newton’s method above, which is more complex but can proceed with
only a single point on the target plane.

Once the minimum possible distance D has been found for initial conditions along the LOV,
we need to take into account the width of the confidence region on the target plane. The trace
of the LOV on the target plane is a kind of spine of the confidence region, and the width can be
estimated by using the minor axis w of the confidence ellipse (see Sec. 3.4). For example, since w
corresponds to one-sigma, the minimum distance to the confidence region corresponding to ¢ = 3
is approximately D — 3w, assuming that D > 3w. The knowledge of the distance between the
LOV and the Earth, measured in sigmas can be essential for evaluating the probability of impact,
as detailed in Sec. 5.5. This approximation corresponds to linearization in the neighborhood of the
LOV point corresponding to the close approach at distance D, and this approximation is adequate
if D and w are small enough.

Both Newton’s and the interpolation methods move along the line of variation to determine
the minimum encounter distance. There is also a method developed by Sitarski (1999) that moves
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in the shortest direction to find the minimum cost ) for collision, and with this information the
impact hazard can be eliminated, or at least the impact probability bounded. This method does
not, however, permit a careful assessment of the impact probability since the probability density in
the vicinity of the VI is unknown. Another method has been proposed in (Muinonen 1999) to find
the minimum value of the penalty AQ) compatible with a collision, without restricting the search
to the LOV. A mixed method, involving both 1-dimensional and multi-dimensional explorations of
the confidence region, has been developed by Muinonen et al. (2001). Additional discussion on this
point is contained in this volume, in the chapter by Bowell et.al., Section. 3.3.

The upper trails indicated in Fig. 1 are typical straightforward trails. Another excellent exam-
ple of this type was the 2028 close approach of 1997 XF;; (based upon the 1997-1998 observations
only). This case has a special feature: the confidence region is long (millions of km), but the nom-
inal solution results in a quite close approach in 2028. Thus linearization around the nominal is
good enough to draw the conclusion that an impact in 2028 was not possible (Fig. 2a), despite the
fact that the departure between the confidence region and the linear ellipse was evident (hundreds
of kilometers) near the ends of the 30 target plane ellipse (Fig. 2b); this departure is greater on
the MTP than on the b-plane (Milani and Valsecchi 1999; Chodas and Yeomans 1999c).

5.4. Complex Encounters

Some trails do not follow the simple behavior described above. When the VAs for these complex
trails are projected into the target plane, the sequence of intercept points approaches the Earth
along the LOV, slows down its approach, and then turns back and recedes in the direction from
which it approached (Milani et al. 2000b, Figure 7). We call this behavior an interrupted return,
and it arises as a result of previous close approaches, as explained in Sec. 6. The bottom trail
depicted in Fig. 1 is an interrupted return, as is clear from Fig. 1b where the trail both enters and
exits the figure on the right. If the orientation of the LOV is mapped on the target plane, for each
VAs, then this reversal in direction can easily be detected.

It can be shown that for an interrupted return the derivative of ( with respect to the o param-
eter on the LOV passes through zero, and, not surprisingly, Newton’s method can fail completely
for these strongly nonlinear cases. Methods to identify such cases, and to perform an alternative
local analysis to detect possible degenerate VIs and estimate their impact probability are being
tested. One possible approach is to use an LOV method including controls to detect interrupted
returns and revert to an MC method restricted to the neighborhood of the VA near the folding
point of the interrupted return. Another possibility is to use the regula falsi method along the LOV,
exploiting the fact that minima of the approach distance D as a function of ¢ do exist, and they
can be identified as zeros of the derivative dD/do. We must handle interrupted returns carefully
because the point on the target plane at which the trail appears to stop and go back has relatively
low stretching, and may actually lie inside the Earth disk. This corresponds to the tangent case of
Sec. 6, and may result in a probability of impact larger that that of an ordinary trail.
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1997 XF11: Monte Carlo Points in Earth Impact Plane in 2028
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Fig. 2.— The linear (3-0 ellipse) and nonlinear (Monte Carlo points) confidence regions on the
2028 b-plane for the 88-day arc of 1997 XFi;. The full region extends over some 2,000,000 km,

but is only 2,000 km wide.
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5.5. Probability of Impact

If the minimum possible close approach distance of a trail is less than one Earth radius then
we know that an impact is possible, and it is important to estimate the probability of impact P;. In
the following, we assume that we have identified the orbit X; with the minimum possible encounter
distance along the LOV as described in Sec. 5.3. Then for this orbit we have oj, which is the
o-distance along the LOV, and we also have the target plane covariance I'y, from which we obtain
the local stretching A and semiwidth w.

Now, taking X; as nominal, we can compute the impact probability P; according to the
linearized procedure described in Sec. 3.4. We note that, since we are at the minimum distance
point along the LOV, the assumption of local linearity is valid despite the fact that the location
and properties of the trail itself may be dominated by nonlinear effects (see Fig. 2). But since X;
is not actually the nominal orbit we must correct P; for the distance from the nominal to obtain

p(oa)

p, = b, Plon)

where we have used again the univariate probability density p(c) discussed in Sec. 3.4.

When A is large (e.g., greater than the lunar distance), as is typical for highly stretched, far-
future encounters, the strip approximation (Sec. 3.4) permits the assumption that the probability
density is a constant over the cross-section of the Earth, which allows a very simple and convenient
computation of the probability. If we can further assume that w < rg then simple one-dimensional
methods may be used, since the full width of the confidence strip falls onto the Earth. In this case,
the geometric chord length ¢ of the intersection of the trail’s LOV with the Earth disk is the main
parameter of interest, and P; is computed from the cumulative probability distribution over ¢:

P - p(XA) ‘.

On the other hand, when w > rg, fully two-dimensional methods must be used to compute the
impact probability, but this only requires the additional consideration of the lateral distance to the
geocenter o, so that the probability density orthogonal to the LOV can be computed. Then Pr
is calculated from a constant bivariate probability density integrated over the cross-section of the

Earth: (04) p(0w)
P\OA)P\T;
Twwé'

When w ~ rg these approximations are not suitable because p(o,,) cannot be assumed constant

P =

over the width of the Earth: a two dimensional probability integral needs to be computed. Even
more complicated cases can be handled with suitable probabilistic formalisms, such as the ones of
Muinonen et al. (2001).
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6. RETURNS AND KEYHOLES
6.1. Resonant returns

Virtual impactors are normally found numerically, given that a realistic physical model of their
motion is quite complex; on the other hand, an exploration of the problem using analytical tools
can give insight into the approximate location of VIs in elements space. Let us discuss the simple
and rather common case of a VI whose impact takes place at a resonant return.

A resonant return occurs when, as a consequence of an encounter with the Earth, the asteroid
is perturbed into an orbit of period P’ = k/h yr, with h and k integers; then, after h revolutions
of the asteroid and k revolutions of the Earth, both bodies are again in the region where the first
encounter occurred and a second encounter takes place (Milani et al. 1999).

An analytical theory of resonant returns has been recently developed by Valsecchi et al. (2001).
This theory treats close encounters with a suitable extension of ()pik’s theory (Opzk 1976), and
adds a keplerian heliocentric propagation (modified to account for the evolution of the MOID, see
Sec. 6.2) between encounters, thus establishing a link between the outcome of an encounter and the
initial conditions of the following one. The motion during an encounter with the Earth is modeled
by simply assuming that it takes place on a hyperbola; one of the asymptotes of the hyperbola,
directed along the unperturbed geocentric encounter velocity v, crosses the b-plane at a right
angle, and the vector from the Earth to the intersection point is b.

We can describe v, in terms of its modulus, v, and two angles, # and ¢; 6 is the angle
between v, and Earth’s heliocentric velocity vg, while ¢ is the angle between the plane containing
Voo and vg and the plane containing vg and the ecliptic pole.

We recall the (&,7, () reference frame defined in Sec. 2.2, where 7 is normal to the b-plane and
( is oriented in the direction opposite to that of the projection of vg on the b-plane. Then £ lies
in both the b-plane and the plane normal to vg, (Greenberg et al. 1988). This choice of the b-plane
coordinates has the nice property that £ is simply the local MOID, while ( is proportional to the
time delay with which the asteroid ‘misses’ the closest possible approach to the Earth.

Opik’s theory then simply states that the encounter consists of the instantaneous transition,
when the small body reaches the b-plane, from the pre-encounter velocity vector vy to the post-
encounter one v, such that v, = v, and ' and ¢' are simple functions of v, 0, ¢, & and (;
the angle between v, and v’y is the deflection v, given by

v ¢
tan - = —
2 b
where ¢ = G Mg /v2,. Finally, simple expressions relate a, e, i to v, 0, ¢ (Carusi et al. 1990), and
w, Q, fto&, (, to (Valsecchi et al. 2001); ¢y is the time at which the asteroid passes at the node
closer to the encounter. It is important to note that for small encounter distance a depends only
on vy, and @ and, correspondingly, a’ depends only on v, and 6'.
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We can formulate the condition for a resonant return to occur as a condition of ¢'; for a
ratio of the periods equal to k/h, we obtain a value of o, say af), given by aj = {/k?/h?, and a
corresponding value of ¢, say 6;.

Given 6, we can easily compute 6 from &, ¢

b2 —c? 2cC

cos ), = cos———— +sinf———,
0 Ere Mpia

thus obtaining the locus of points on the b-plane leading to a given resonant return. We can

rearrange it in the form

£2+C2_2DC+D2:R2

that is the equation of a circle centered on the (-axis ( Valsecchi et al. 2000); R is the radius of such
a circle, and D is the value of the (-coordinate of its center, and they can be obtained from

csin )
R = |—F——
cos 0 — cos 0
csinf
D =

cos B — cos b’

Actually, the expression for the locus of points on the b-plane leading to a given resonant return
contains also terms that are of the third order in &, ¢ and ¢ (Valsecchi et al. 2001), but for the
purposes of the present qualitative discussion these terms can be ignored.

Figure 3a shows the arrangement of the b-plane circles corresponding to resonant returns to
close encounters in 2040, 2044, 2046 for the August 2027 encounter with the Earth of asteroid
1999AN;; these correspond, respectively, to the mean motion resonances 7/13, 10/17, and 11/19.
In the plot is also drawn a straight line at & = 6rg, that represents a string of VAs having the same
orbit and MOID (and thus the same &), and spaced in the timing of encounter with the Earth (and
thus different values of ¢). It is clear that in such an arrangement there are two regions for each
resonance that lead to resonant returns, and that they are located at the crossings of the straight
line with the appropriate circle. In the Figure is also shown the circle associated with the 3/5 mean
motion resonance, corresponding to a resonant encounter in 2032; note that the straight line does
not intersect the circle, implying that no close encounter takes place.

6.2. Keyholes

Chodas (1999) introduced the term ‘keyhole’ to indicate small regions of the b-plane of a
specific close encounter such that, if the asteroid passes through one of them, it will hit the Earth
at a subsequent return. This can be generalized by just requiring that the subsequent approach
occurs to within a given small distance. An impact keyhole is thus just one of the possible pre-
images of the Earth’s cross section on the b-plane, and is therefore tied to the specific value for the
post-encounter semimajor axis that allows the occurrence of the next encounter at the given date.
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Fig. 3.— Circles corresponding to various mean motion resonances on the b-plane of the August
2027 encounter with the Earth of asteroid 1999ANyy. Distances are in Earth radii augmented for
gravitational focussing (bg, see Section 2.2). (a) Uppermost circle: 7/13 resonance; then, with the
centers along the (-axis, from top to bottom: 3/5, 10/17 and 11/19 resonances. The vertical line
at & = 5.5 bg represents fictitious asteroids all with the same orbit as 1999AN;y and spaced in the
time of encounter with the Earth. (b) Explicit depiction of keyholes for the 2040 returns on the
2027 b-plane of 1999 ANpy. The stream of Monte Carlo points corresponds to the vertical line in
(a). The dashes represent the best-fitting circle passing through the impacting zones.
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Figure 3b depicts the two keyholes associated with the 7/13 resonance that are also shown in the
top half of Fig. 3a.

The b-plane circles corresponding to a given a’ address the question of the timing (i.e., the (-
coordinate) of the subsequent encounter. However, if we use a simple keplerian propagation between
encounters, this would leave unchanged the MOID (the {-coordinate) of the next encounter. This
would be unrealistic: in general, the MOID varies between encounters for two main reasons: on a
long time scale, secular perturbations (Gronchi and Milani 2001) make it slowly evolve through the
so-called Kozai cycle, or w-cycle, while on a shorter time scale significant quasi-periodic variations
are caused by planetary perturbations and, for planets with massive satellites, by the displacement
of the planet with respect to the center of mass of the planet-satellite system.

For the purpose of obtaining the size and shape of an impact keyhole we can, however, just
model the secular variation of the MOID as a linear term affecting ¢”, the value of ¢ at the next
encounter,

£ = €+ 5= (1 — 1),
where ¢{, and ¢ are the times of passage at the node, on the post-first-encounter orbit, that are
closest to, respectively, the first and the second encounter. We can compute the time derivative of
¢ either from a suitable secular theory for crossing orbits (Gronchi and Milani 2001) or deducing
it from a numerical integration. The result could then be corrected to take into account the short
periodic terms, possibly by using the output of a numerical integration. Without such numerical
corrections, the theory would reliably predict very close encounters (e.g., within a few thousandths

of AU), but not collisions, which require accuracies an order of magnitude better.

The computation of the size and shape of an impact keyhole is described in detail in Valsecchi
et al. (2001); here we give a qualitative discussion. Let us start from the image of the Earth in
the b-plane of the subsequent encounter, the one in which the impact should take place; we denote
the coordinate axes in this plane as £”, ", and consider the circle centered in the origin and of
radius bg. The points on the b-plane of the first encounter that are mapped—by the keplerian
propagation plus the MOID drift—into the points of the Earth image circle in the b-plane of the
second encounter constitute the Earth pre-image we are looking for.

As far as the location is concerned, impact keyholes must lie close to the intersections, in the
first encounter b-plane, of the circle corresponding to the suitable resonant return and the vertical

line expressing the condition that the MOID be equal to —%(tg’ —1p)-

What about size and shape? To address this question, we can examine the matrix of partial
derivatives 9(¢"”,¢")/0(&,¢); we do this under the assumption, as in Valsecchi et al. (2001), that
for the encounter of interest ¢> << b2, since this condition is not too restrictive in most asteroid
encounters with the Earth. The matrix of partial derivatives has the following structure:

og”  9g”
% &% |~
ot o |

9 &
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1+ 0(3) O(3) L
O@1) —2hfs 1+0(8) +hfias |’

where f is a constant not depending upon h.

The first row of the matrix shows that the £ dimension of the pre-image of the Earth is
essentially unchanged; the second row, however, gives a completely different picture. First, both
derivatives grow linearly with h, the number of heliocentric revolutions the asteroid makes between
the two encounters; second, the relative size of the two elements of this row depends critically on the
values of £ and (. Apart from the case in which £ = ¢, that we will discuss in a moment, 3¢" /3¢ can
be rather large; this means that the separation in ¢ of two VAs, that grows with 9¢"”/9¢ going from
the first to the second encounter, can increase by a large amount. If we now go backwards in time,
from the second to the first encounter, the expansion in { becomes a contraction; this contraction
affects the pre-image of the Earth, by squeezing it along (. The result of all this discussion is that
the keyhole has the form of a lunar crescent that closely follows the appropriate b-plane circle, with
a ‘width’ in £ of about 2bg, and a maximum thickness of about 2bg /(9¢" /().

When £ = ¢, the third term in 9¢”/0¢ becomes 0, and somewhere in the vicinity we can have
that the entire derivative becomes very small, less than 1; this can happen if the absolute value
of the MOID at the first encounter is equal to the radius of the appropriate resonant circle. As a
consequence of the smallness of 9¢"/9¢, the dimension in ¢ of the keyhole can be larger than bg!

The possibility of anomalously large keyholes is a manifestation of a more general phenomenon
that takes place whenever a string of VAs is almost tangent, but not crossing, a resonant return
circle, as in the case of the 3/5 resonant circle shown in Fig. 3a. When this is the case, what
happens at the time of the resonant return is that the string of VAs ‘enters’ the b-plane of the
resonant encounter from the side of either positive or negative ¢ but then, since none of the VAs
quite reaches the resonant semimajor axis, at some point it has to ‘turn back’; the turning point
is obviously a point where 9¢”/0¢ = 0. This situation is frequently encountered in numerical
integrations and also known as ‘interrupted return’, as in the lower trail of Fig. 1. If this was
to take place with the MOID at the second encounter < bg, an anomalously large keyhole would
occur.

As said before, the computation of VIs requires sophisticated numerical modeling of the orbital
evolution. In this context, the simplifications made in the theory just described may lead one to
think that it has no practical value. However, the main advantage of the theory is the geometrical
understanding of the global structure of potentially impacting solutions that it gives, and this is
particularly relevant for complex or pathological cases, such as interrupted returns. In this sense,
it can be considered as a tool to guide the numerical explorations, and to contrive fictitious critical
scenarios to be fed to automatic monitoring programs for testing.
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7. CONCLUSIONS AND FUTURE WORK

The last three years have seen both an enormous increase in our ability to identify impact
possibilities, and the establishment of the first efficient impact monitoring system; this progress
has been in part driven by the discovery of objects in orbits with very small, but detectable,
Earth impact regions within their confidence region. The situation is now evolving towards a more
systematic study of the problem, with the goal of improving the currently operating monitoring
system (CLOMON) and of establishing an additional and independent one at JPL.

As a consequence of the first two years or so of operation of CLOMON, with the capability
of detecting collision possibilities for newly discovered objects while they are still observable, it
has become routinely possible to concentrate follow-up observations on potentially colliding NEAs;
in fact, all the NEAs larger than about 100 meters in diameter discovered after the end of 1999,
having impact possibilities in the confidence regions of their short-arc orbits, have been followed-up
long enough that their confidence regions could be reduced to the point of excluding any detectable
impact.

The analytic theory as it stands is still largely incomplete; future developments should include:

e a complete treatment of non-resonant returns, i.e. returns taking place at the other node, for
asteroids having either both nodes at a heliocentric distance very close 1 AU, or the other
node at a heliocentric distance very close to the orbital radius another planet;

e a better understanding of the complex phenomena associated with interrupted returns and
anomalously large keyholes;

e the possibility to treat sequences of more than two encounters, with the last encounter of the
sequence leading to an impact.

The work now in progress, whose results should be available soon, includes the following
developments and tests.

e The Sentry system, a fully independent monitoring system at JPL, which will include “sec-
ond generation” features such as the ones mentioned below. At the same time the second
generation CLOMON-2 system is under development.

e Improved methods to handle interrupted returns in order to sharply reduce the cases of
divergent iterations in Newton method.

e Mechanisms to implement focused or densified Monte Carlos to handle difficult cases, includ-
ing interrupted returns.

e A new observation weighting scheme allowing the use of modified Gaussian probabilities as a
reliable estimate of impact probabilities.
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