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1.1 IDENTIFICATION

The identification problem deals with separate sets of
observations, which might, and might not, belong to the
same object. The identification is confirmed if all the ob-
servations can be fitted to a single least squares orbit with
acceptable residuals.

The problem can be classified as orbit identification when
the observations of both arcs are enough to solve for two
least squares orbits: the input data are two sets of orbital
elements, with covariance matrices. A metric in the 6-
dimensional space of elements (propagated to the same
epoch) has to be used to assess the proposed identifi-
cations, before the computationally intensive differential
corrections.

The most difficult identification problem is linkage, when
two arcs of observations both too short to perform orbit
determination are to be joined into an arc good enough
to compute an orbit. There is no way to directly compare
quantities of the same nature, e.g., observations with ob-
servations: they are at different times, some interpolation
function has to be used (either polynomials in time or Vir-
tual Asteroids).

Tracklet composition is another form of identification.
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1.2 ATTRIBUTION AND ATTRIBUTABLE

The identification problem can be classified as attribution
when data insufficient to compute a usable orbit for one
arc (e.g., two 2-dimensional observations) is compared to
the known orbit of the other arc. Not enough information
is available in the orbits space and predictions from the
orbit need to be compared with the observations from the
other arc. Thus it is useful to synthesize the information of
the second arc into a vector observation at a single time.

A celestial body is at the heliocentric position r and is
observed from the heliocentric position q on the Earth.
Let (ρ,α,δ) be spherical coordinates for the topocentric
position r−q. An attributable is a vector A = (α,δ, α̇, δ̇),
representing the topocentric angular position and velocity
of the body at a time t̄.

The distance in the 4-dimensional space between the pre-
diction A1 issued from the orbit and the attributable A2
computed from the observations needs to take into ac-
count the uncertainities. Then it is used as a filter to re-
strict the number of possible attributions between N orbits
and M attributables to much less than M×N possibilities.
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1.3 ATTRIBUTION METRIC

Let C1,C2 be the normal matrices:

C1 = Γ−1
1 ; Γ1 = DF Γx DFT

is obtained from the propagation of the covariance matrix
Γx of the orbital elements x by means of the differential of
the prediction F(x). C2 is the normal matrix of the least
square fit used to obtain A2 from the observations. The
two least squares fits (for the orbit, for the attributable)
have target functions Q1,Q2 (weighted sums of squares
divided by number of residuals m1,m2)

Qi(A) = Qi(Ai)+
(A−Ai)

T Ci (A−Ai)

mi
= Qi(Ai)+∆Qi(A) ,

neglecting higher orders. By fitting all the data together
the target function becomes

Q(A) = Q∗+∆Q(A) =
m1Q1(A)+m2Q2(A)

m
=

=
m1
m

Q1(A1)+
m2
m

Q2(A2)+
m1
m

∆Q1(A)+
m2
m

∆Q2(A)

where m = m1+m2 and the identification penalty ∆Q(A)

is a convex combination of the two penalties, it has to be
minimized, but is in > 0 unless A1 = A2.
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1.4 COMPROMISE SOLUTION

The identification penalty is a function of the vector differ-

ences (A−Ai) and of the normal matrices Ci

m ∆Q(A) = (A−A1)
T C1 (A−A1)+

+(A−A2)
T C2 (A−A2) =

= (A−A0)
T C0 (A−A0)+K

C0 = C1 +C2 assumed invertible

A0 = C−1
0 (C1 A1 +C2 A2)

K = AT
1 C1 A1 +AT

2 C2 A2−AT
0 C0 A0 =

= (A2−A1)
T (C2−C2C−1

0 C2)(A2−A1)

thus the penalty K/m is a quadratic form in the difference

A2 −A1. The geometric interpretion is shown in the Fig-

ure (for a 2-dim case, that is with ellipses).

∆Q1 = σ 2∆ Q = σ 2
2

∆Q1 +

Α2
Α 1

Α∗

m2
m1

m1 m2
2σ=2Q∆
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1.5 EFFICIENT ALGORITHM FOR
ATTRIBUTION

The challenge of a high performance (=completeness +
reliability + computational efficiency) algorithm can be met
only by a multi stage procedure. Each successive step
filters a smaller fraction of the N×M couples, with a larger
computational load.

Filter 1 operates in the 2-dim space of (α,δ). In a sim-
pler version it just selects the attributables within a disk
(fixed radius) centered at the nominal prediction from the
orbit. This can be easily implemented with O(M logM)+

O(N logM) comparisons using heap sorting and binary
search in 1 variable, say α. For longer prediction time
spans, a Filter 1.5 uses the 2-dim identification penalty.

Filter 2 operates in the 4-dim space of the attributables,
with as control a function of the penalty, such as

√
K.

Filter 3 operates in the 2m-dimensional space of resid-
uals, looking for a nominal solution by differential correc-
tions. As first guess, the known orbit can be used (not
when it was purely hypothetic: then a first guess is com-
puted from the compromise solution A0 of Filter 2).
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1.6 WHEN ATTRIBUTION IS USED

Known objects with good orbits produce tracklets which

have to be attributed. This could be done before the iden-

tification procedure.

Identifications, even if just found and with few tracklets,

can be augmented by adding tracklets in another night or

month. (For another apparition, this is far from obvious,

and Orbit Identification is more promising).

A swarm of Virtual Asteroids compatible with a tracklet

can be propagated to another night and be used to seek

attributions. This is a way to start the identification proce-

dure, as a first step of recursive attribution.

A couple of orphan detections can be attributed to a

known orbit; however, if the orphans are low S/N, the or-

phans can only be adopted in pairs, because in the 2-dim

space (α,δ) their number density is too large. The algo-

rithm is somewhat different because a quadratic loop has

to be avoided both in Filter 1 and in Filter 2.
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1.7 CURVATURE, TOO SHORT ARC

Curvature A measure of the deviation of the Observed

Arc from a great circle, traced with uniform speed on the

celestial sphere. The curvature is Significant if the de-

viations of the individual observations from a great circle

cannot be due only to observational error (according to

the Error Model).
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Plot on the (ρ, ρ̇) plane (topocentric range in AU, range
rate in AU/day) of the lines of constant geodesic curvature
(ρ = const) and constant along track accelerationt, given
the attributable of the discovery nigt of 2004 AS1. The in-
tersection of the nominal values would be in the lower left
corner (imediate impact region), the a posteriory ground
truth is the red cross. This disastrous false alarm was due
to the faulty error model.
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1.8 DEFINITIONS: ARC TYPE, DISCOVERY

Arc of Type N An Observed Arc which can be split into
exactly N disjoint TSA in such a way that each couple of
TSA consecutive in time, if joined, would show a signifi-
cant curvature. This definition is meant to replace the cur-
rently used definition of N-nighter, an observed arc con-
taining observations belonging to exactly N distinct nights.

Discovery A set of observations of a SSO, forming an
Observed Arc of Type N with N ≥ 3; there must be a
unique full least squares orbit fitting the data with resid-
uals compatible with the Error Model; the object needs to
be a New SSO. It is also required that the data contain
enough photometric information to fit an absolute magni-
tude. The Observations have to belong to tracklets which
have been submitted to the Data Center, either at once or
at different times (by one or more Observers); the Orbit,
and the critical Identification (allowing a Type 3 Arc to be
built) must either have been submitted to the Data Cen-
ter by Orbit Computers or have been computed by Data
Center itself.

Discovery of a comet A Discovery as above, comple-
mented with enough observational data to prove that there
is a directly detectable cometary activity.
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2.1 VIRTUAL ASTEROIDS

When a single orbit solution is not enough to represent
the possible orbits, they are replaced by a swarm of Vir-
tual Asteroids (VAs). The VAs share the reality of the
physical asteroid, in that only one of them is real, but we
do not know which one. (Also called the multiple hypoth-
esis method). Additional observations allow to decrease
the number of VAs still compatible.

In fact, there is always an infinite number of orbits in the
confidence region defined by some maximum allowed
penalty m∆Q(x) ≤ σ2. Thus each VA is just a represen-
tative of a patch in the confidence region. Such a finite
sampling strategy can be successful only when handling
the patch around a VA is matemathically much simpler
than handling the entire confidence region at once.

This occur when the VAs are enough to allow the use of
a linear approximation in their patch. That is, the confi-
dence region is NOT well approximated by the ellipsoid
(x − x∗)t Cx(x∗)(x − x∗) ≤ σ2 centered at the nominal
least squares solution, but the ellipsoids centered at each
of the VAs are a covering of the confidence region.
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2.2 LINEARIZATION

When the patches around each VAs are small enough,

we can linearize the prediction function (providing the po-

sitions in some following night, etc.) at each VA and use

the linear theory, for example to compute the identifica-

tion penalty. That is, the VA number j can be identified

with another asteroid, the others cannot, thus number j is

more likely to be true than the others.

We will first discuss the simplest possible case, in which

only two VAs are required, with orbits x(1) and x(2). This

is the double solution case occurring only in the sweet

spot surveys. In most cases, when there are tracklets

over 3 nights, each one of the two solutions is surrounded

by a small component of the confidence region. Thus

the linear approximation, expressed by the normal matri-

ces C(x(1)),C(x(2)) is accurate for each of the two; on

the other hand, the distance between the two solutions is

large, that is the quadratic approximation of the penalty

(x(2)−x(1))TC(x(1)) (x(2)−x(1)) is very large and com-

pletely wrong.
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2.3 COMPUTATION OF THE ATTRIBUTABLE

The procedure to compute an attributable, if there are m≥
3 observations, is as follows. Given the observed values

(ti,αi,δi) for i = 1,m we can fit both angular coordinates

as a function of time with a polynomial model: in the cases

of interest a degree 2 model is satisfactory

α(t) = α(t̄)+ α̇(t̄) (t − t̄)+
1
2

α̈(t̄) (t − t̄)2

δ(t) = δ(t̄)+ δ̇(t̄) (t − t̄)+
1
2

δ̈(t̄) (t − t̄)2

with t̄ the mean of the ti; the solution (α, α̇, α̈,δ, δ̇, δ̈) is

obtained by a linear weighted least squares fit, together

with the two 3×3 covariance matrices Γα,Γδ.

The second derivatives with respect to time are computed

as an insurance against the possibility that a linear fit is

not a good representation of the short arc data, but the

attributable contains only the averages and rates of angu-

lar motion. The marginal covariance matrix of A, whatever

the values of (α̈, δ̈) is obtained by extracting the relevant

4×4 submatrix.
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2.4 COMPONENTS OF CURVATURE

The heliocentric position of the asteroid is the vector r and

the topocentric position is

ρ = ρ ρ̂ = r−q

where q is the heliocentric position of the observer, ρ̂ the

unit vector, ρ the distance. The angolar velocity of the the

asteroid on the celestial sphere is

v =
dρ̂

dt
= η v̂ , v̂ · ρ̂ = 0

where η = ‖v‖ is the proper motion. By using the arc
length parameter s, defined by ds/dt = η, we have dρ̂/ds =

v̂ and the derivative dv̂/ds = v̂′ has the properties

v̂′ · v̂ =
1
2

d
ds

‖v̂‖2 = 0

v̂′ · ρ̂ =
d
ds

[v̂ · ρ̂]− v̂ · ρ̂′ = −1

With the ortogonal vector n̂ = ρ̂× v̂ we can express v̂′ as

v̂′ = −ρ̂+κ n̂

where κ is the geodesic curvature, measuring the devi-

ation from a great circle (a geodesic on the sphere).
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2.5 COMPUTATION OF CURVATURE

The geodesic curvature can be computed from the sec-

ond derivatives (α̈, δ̈) and the attributable A = (α,δ, α̇, δ̇).

κ =
1

η3

[

(δ̈α̇− α̈δ̇)cosδ+ α̇(η2 + δ̇2)sinδ
]

.

Another component of the path second derivative is the

along track acceleration, that is

d2ρ̂

dt2 · v̂ =
d
dt

(η v̂) · v̂ =
(

η̇ v̂+η2 v̂′
)

· v̂ = η̇ ,

it can be computed from (α̈, δ̈) by

η̇ =
d2ρ̂

dt2 · v̂ =
α̈ α̇ cos2 δ+ δ̈ δ̇− α̇2 δ̇ cosδ sinδ

η
.

The third component of curvature is simply the curvature

of the sphere, as shown by v̂′ · ρ̂ = −1.

Given these formulas, it is possible to compute the covari-

ance matrix of the quantities (κ, η̇) by propagation of the

covariance matrix of the angles and their derivatives with

the matrix of partial derivatives computed from the above

formulae for κ and η̇.
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2.6 THE PRELIMINARY ORBITS OF
LAPLACE

The time derivatives of the topocentric vector ρ

ρ̇ = ρ̇ ρ̂+ρ η v̂ = ṙ− q̇
ρ̈ = ρ̈ ρ̂+(ρ η̇+2 ρ̇ η) v̂+ρ η2 (κ n̂− ρ̂)

can be decomposed along the orthonormal vectors (ρ̂, v̂, n̂)

ρ̈ · v̂ = ρ η̇+2 ρ̇ η , ρ̈ · n̂ = ρ η2 κ , ρ̈ · ρ̂ = ρ̈−ρ η2 .

Let’s assume q is the center of the Earth (neglecting the

topocentric correction). The 2-body formula for the accel-
erations ρ̈ and q̈ is

ρ̈ =
−µ r

r3 +
µ q
q3

where r is the heliocentric distance of the asteroid, q is

the heliocentric distance of the Earth, µ the mass of the
Sun times the gravitational constant. Note that the de-
nominator of the first fraction is r3 = S(ρ)3/2 where the
relationship between the sides ρ,r,q of the triangle is

r2 = S(ρ) = ρ2 +2 cosε q ρ+q2

with cosε = q̂ · ρ̂.
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2.7 MULTIPLE SOLUTIONS

The component of the relative acceleration ρ̈ along the n̂
direction is

ρ̈ · n̂ =
−µ q · n̂

r3 +
µ q · n̂

q3 = ρ η2 κ

where we have used ρ̂ · n̂ = 0 to simplify. Given κ, this is
an equation for ρ. Let us define

C =
η2 κ q3

µ q̂ · n̂
then the dynamic equation (n̂ component) takes the form

1−C
ρ
q

=
q3

S(ρ)3/2
.

By substituting the possible values of ρ obtained by the
triangle equation, after squaring, we obtain an algebraic
equation of degree eight:

p(r) = C2r8−q2
(

C2 +2C cosε+1
)

r6

+2q5(C cosε+1)r3−q8 = 0

which has the same solutions provided q/ρ > C. By the
standard theory of polynomial equations, this polynomial
cannot have more than three positive roots, including the
“degenerate” solution r = q, implying ρ = 0.
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2.8 REGIONS OF DOUBLE SOLUTIONS

As the parameter C varies, the dynamical equation C ρ/q =

1−q3/r3 represents a family of curves in the plane.
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The green dotted curve is r = q, that is κ = 0. The red
dotted curve is the limiting curve, the double solutions can
occur only in two regions: inside the loop and outside the
r = q curve on the left of the unlimited branch. The tan-
gents have angles of 1160.5 and 630.5 with the Sun.
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2.9 HOW TO HANDLE DOUBLE SOLUTIONS

The main problem is that in most cases the double solu-
tions for the preliminary orbit are one Main Belt and one
NEO, often Aten (a < 1 AU ). Taking into account the a pri-
ori probability estimated from population models the MB
solution has in fact a probability > 0.99; on the other hand
the only way to discover NEOs is to make the hypothesis
that each one is a NEO, otherwise a poor orbit would re-
sult in a loss of the identifications.

Thus the goal of the preliminary orbit determination (IOD)
should be to get both solutions whenever they exist. This
can be done in two ways:

1) Use a IOD algorithm which finds both roots of the de-
gree 8 equation, checks which solution is admissible, com-
putes ρ, ρ̇, optionally improves the orbit by an iterative
method, the tries differential corrections for all the pre-
liminary orbits found.

2) Use a IOD algorithm based upon a larger swarm of
VA, thus in most cases if there are two distinct solutions
both will be found. Optionally, whenever a 3-night orbit
is found, look for the phantom orbit corresponding to the
other root of the deg. 8 equation.
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2.10 ESTIMATES OF CURVATURE

From the dynamical equation in the n̂ direction

ρ̈ · n̂ = ρ η2 κ =⇒ η2 κ =
ρ̈ · n̂

ρ
the heliocentric acceleration of a solar system body is
small:

r ' 1 ⇒ ρ̈ · n̂ ≤ 0.6 cm s−2 = 3×10−4 AU d−2 .

The geocentric distance ρ cannot be too small, else the
object is too small to be aprimary goal; simple example:
H ≤ h ⇒ ρ > 1 AU at opposition (phase 0). Thus

η2 κ ≤ 3×10−4 d−2

From the Taylor formula for ρ̂ as a function of the arc
length

ρ̂(∆s) = ρ̂(0)+ v̂ ∆s+(κ n̂− ρ̂)
∆s2

2
+ O(∆s3) ;

neglecting O(∆t3) we have ∆s = η ∆t + η̇ ∆t2/2 thus

|(ρ̂(∆t)− ρ̂(0)) · n̂| = η2 κ
∆t2

2
≤

≤ 1.5×10−4 ∆t2 ' 0◦.01 ∆t2

The uncertainty ∆v̂ in the direction of angular motion con-
tributes less: η ∆v̂ ' 0◦.004 d−1 for PS.
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2.11 ESTIMATES OF ACCELERATION

A similar argument applies to η̇

ρ̈ · v̂ = ρ η̇+2 ρ̇ η =⇒ η̇ =
ρ̈ · v̂

ρ
−2 η

ρ̇
ρ

ρ̇ and η ρ are ≤ 1/60 AU d−2 thus

η̇ ≤ 9×10−4 d−2 .

However, this is a very generous estimate, if fact the equal
sign can apply only for very strange orbits; for a realistic
sample of orbits, the values should be significantly less.

|(ρ̂(∆t)− ρ̂(0)) · v̂−η ∆t| = |η̇ ∆t2

2
| ≤

≤ 4.5×10−4 ∆t2 ' 0◦.03 ∆t2

The uncertainty in η does not matter. Thus the area to be
scanned to find the same object after ∆t days is

π 0◦.01 0◦.03 ∆t2 ' 10−3 ∆t2 deg2

Even with number density N ' 400 per deg2, after one
day there is on average less than one detection, and the
number of false identifications can be controllable even af-
ter a few days. This is the basis of the method of Kubica.
In the future could be the base for an even more aggres-
sive strategy, combining some tracklets and some single
observations.
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3.1 THE QUALITY OF THE PAN-STARRS
OUPUT

Pan-STARRS will be the first Solar System survey to take
full responsibility for processing the observations to ob-
tain the discoveries, that is for identification and orbit de-
termination. Thus the strengths of PS are not just the
gigapixel firepower, but also MOPS. However, the ques-
tion is to make sure that the output of MOPS is something
to be proud of.

Quality control of the data output has many aspects, we
shall discuss QC for orbits and for identifications. The
main problem is to find the right balance between quantity
and quality, that is in the simulations we want to measure
both completeness and reliability.

To push completeness even in the probabilistic detection
range, we wish to include in the output identifications with
few tracklets (maybe even 2) and orbits even when the
conventional differential corrections fail. This is accept-
able provided each identification and its orbit are docu-
mented with an exact specification of its quality. Then the
output can be partitioned in high quality, reliable full “dis-
coveries” and in low quality, dubious, incomplete discov-
eries (or even more than two categories if needed).
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3.2 THE ORBITS ARE NOT ALL EQUAL

The orbits can be preliminary (also called initial, hence
IOD) and least squares, in the latter case with different
number of fit parameters: either 4, or 5, or 6.

Nominal solutions; given a set of m = 2M scalar obser-
vations, and some first guess x for the orbital elements,
the observation residuals ξ (an m-dim vector) with their
weight matrix W (an m×m symmetric matrix) and the nor-
mal matrix C at x

B(x) =
∂ξ
∂x

(x) , C(x) = B(x)T W B(x) ,

differential corrections is a modified Newton’s method,
an iterative procedure with, at each step, a correction ∆x
such that

C(x) ∆x = D(x) = −BT W ξ

where the right hand side D is proportional to the gradient
of the target function Q(x) = ξT W ξ/m. At convergence
x → x∗ with D(x∗) = 0, then x∗ is a (local) minimum of
Q(x); this is the 6-parameter fit. Starting from a different
first guess can result in a different local minimum (as in
the case of double preliminary orbit near quadrature).
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3.3 CONSTRAINED ORBITS

Let λ j(x), j = 1, . . . ,6 be the eigenvalues of C(x), with
λ1(x) the smallest one; let V1(x) be an eigenvector with
eigenvalue λ1(x), that is

C(x)V1(x) = λ1(x) V1(x)

that is the weak direction of least information, also the
eigenspace of the largest eigenvalue of Γ(x), that is the
direction of greatest uncertainty. Let H (x) be the 5-dim
hyperplane orthogonal to V1(x)

H (x) = {y|(y−x) ·V1(x) = 0} .

Constrained differential corrections is the iterative pro-
cedure in which the equation for each step is

C(x) ∆x = πH (x)D(x)

with the right hand side projected onto the hyperplane
H (x), that is refusing to correct along the weak direction.
At convergence x → x∗ the gradient of the target function
is parallel to the weak direction. Such points form a curve
in 6-dim space, called Line Of Variation (LOV).

The x∗ always depend upon the initial guess, and they are
LOV solutions with 5 free parameters. (An alternative,
and older, method is to fix one variable, such as eccen-
tricity, and fit the other 5.)
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The asteroid 1998 XB, discovered at an elongation of 93◦,
had a double IOD. The Figure shows the RMS(ξ) (arcsec)
vs. the LOV parameter σ. The lines are marked with
plusses (arc time span 9 days), crosses (10 days), stars
(11), boxes (13), full boxes (14) and circles (16).

The first orbit published by the MPC, with 10 days of obs.,
had a = 1.021 AU, corresponding to the higher local min-
imum. In the following days the orbit had a decreasing
until 0.989 (at 13 days). With 16 days, the semimajor axis
jumped to 0.906.
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3.4 TOO SHORT ARCS

In some cases, mostly TNO, even the constrained differ-
ential corrections may not converge. This because the
curvature is not significant, it is a Type 1 Arc, that is, we
can only compute an attributable for all the tracklets to-
gether. For TNO 2-ids, this happens in 94% of the cases.

To join two tracklets in a single attributable, we use at-
tributable elements x = (α,δ, α̇, δ̇,ρ, ρ̇) where ρ is the
topocentric distance. The epoch time is t0 = t − ρ/c (t
the average observation time). Then it is a good approx-
imation to assume that (ρ, ρ̇) are undetermined and just
leave them at the first guess value, correcting the first four.

The values of (ρ, ρ̇) cannot take an arbitrary value in the
half plane ρ > 0 because, for a given attributable, some
values in that plane correspond to either hyperbolic orbits
or too close to be of significant size. Thus (ρ, ρ̇) must
belong to a compact admissible region.

Thus the constrained fit with 4 parameters gives an ad-
missible region solution. (This method was originally
proposed by Tholen and implemented in KNOBS, then
used by Chesley in his analysis of the 2004 AS1 case).
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For 1998 XB, attempting to identify the attributable from

the night of November 25 with another attributable, based

only upon the data of December 26. The plot shows

the admissible region (parabolic boundary green, shoot-

ing star limit dotted) in the plane of the variables (ρ, ρ̇) at

the time of the first tracklet. The LOV (yellow) is close to

the nodes with low penalty (red), but the true solution (red

square) is far along the same direction. Anyway identifi-

cation with a third night is possible.
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The Centaur (31824) Elatus was discovered on October
29, 1999 by the Catalina Survey. The admissible region
has two connected components, as it is usual for TNO at
opposition (Warning: double solutions occur at quadra-
ture, double components occur at opposition!).

For the precovery by the LONEOS survey on October 17,
1998 we have propagated ' 40 VAs and computed the
identification penalties: we were able to obtain 4 LOV so-
lutions (one hyperbolic). The nominal solution also corre-
sponds to a hyperbolic orbit.
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3.5 ORBIT COMPUTATION: AN EFFECTIVE
PROCEDURE

The procedure for orbit determination can be organized
as a sequence of steps.

1) IOD: for 3-nighters (with significant curvature) Gauss’
method takes into account the topocentric corrections, thus
it is more effective than Laplace’s (unless the latter is cor-
rected, but the topocentric correction in acceleration is
large!). For 2-nighters a different IOD is based upon the
compromise attributable A0 (see 1.4). In both cases there
can be multiple preliminary orbits.

2) If there is no significant curvature, a 4-fit is performed
to find the attributable combining the information from
the ≥ 2tracklets. If the curvature is good this is skipped.

3) The constrained differential corrections are used to 5-fit
a LOV solution.

4) The full differential corrections are used to 6-fit a nom-
inal solution.

5) Quality control is applied to the residuals at conver-
gence, the orbit is accepted if the normalized RMS(ξ) is
small, plus additonal checks on systematic trends.

Each stage is used as first guess for the next one, pro-
vided it passes some (looser) quality control.
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3.6 THE QUALITY OF AN IDENTIFICATION

In a large identification procedure (several 100,000 ids
in a full size PS simulation), how to assess quality? Let
us define an order among them: an id with more track-
lets (should be nights?) is better, among the ones with
the same number the lower RMS(ξ) is better. The list of
identification is sorted by this order. The identifications on
the top of are the most reliable; however, we must take
into account all the other ids having tracklets in common:
they can be discordant or compatible.

As a very small example, let us assume the sorted list of
identifications is as follows (here capital letters stand for
tracklet unique identifiers, OIDs in DB jargon). We pro-
ceed to the normalization of the ids DB, removing all the
discordancies (and possibly the multiple solutions).

1. A = B = C = D in normalized DB
2. A = B = C compatible and inferior to 1.
3. E = F = C discordant and inferior to 1.
4. A = B compatible and inferior to 1.
5. F = C discordant and inferior to 1.
6. E = F1 in normalized DB
7. E = F2 compatible and inferior to 6.
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3.7 THE DISCOVERY CLAIMS

As discussed in 1.8, the requirements for discovery are:
1) astrometry with enough information, or Arc of Type 3,
For PS, NEO and MBA with 3 tracklets in 3 distinct nights
are Type 3 Arcs in 90% of the cases.
2) unique nominal solution (with 6 parameters): both
double nominal solutions and multiple LOV solutions (also
1 LOV 1 nominal) are to be discarded (problem with ex-
ample E = F1 above).
3) previously unknown. All the tracklets should be tested
for attribution to previously known objects before identifi-
cation, then the corresponding ids should be added to the
newly found one and normalization repeated.

What with identifications not surviving to normalization?
They are to be considered possible ids. Thus the possi-
ble identification database contains identifications
1) with Arc Type 2 (possibly 1 for TNO)
2) with multiple orbits: double nominal (near quadrature)
and LOV solutions
3) discordant with others of same quality (same number
of tracklets/nights and comparable RMS(ξ)).

About 1/4 of TNOs observed at opposition over 3 nights
will end up in this category.
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