Sommario La dipendenza delle soluzioni dalle condizioni iniziali è non solo continua, ma ha una costante di Lipschitz che può essere calcolata a partire dalla costante di Lipschitz del secondo membro, e che cresce esponenzialmente al crescere dell'intervallo di tempo. Questo consente in molti casi, tra cui quello lineare, di dimostrare che le soluzioni non vanno all'infinito in un tempo finito.
Teorema della diseguaglianza di Gronwall : Sia una funzione reale non negativa, definita su un aperto . Se la f è dominata dal suo integrale, nel senso che per due costanti , ,
allora è dominata, per ogni , da una funzione esponenziale:
Dimostrazione:
poiché il risultato segue da una maggiorazione per u(t).
Evidentemente u è derivabile e . Se , anche u(t)>0 e da
si ottiene, integrando entrambi i membri,
ossia .
Il risultato può inoltre essere applicato ad una successione infinitesima : associando a ciascun una funzione come sopra e passando al limite per si ottiene la tesi per il caso
Il teorema che segue applica la diseguaglianza di Gronwall per fornire dettagli precisi sulla dipendenza dai dati iniziali del flusso di un sistema dinamico.
Teorema di continuità del flusso : Siano un aperto, un intervallo e un campo vettoriale uniformemente lipschitziano nella prima variabile, con costante di Lipschitz L. Se Y(t) e Z(t) sono soluzioni dell'equazione
passanti, rispettivamente, per e al tempo , allora
Dimostrazione:
ovvero la tesi.
La diseguaglianza di Gronwall consente di mostrare che, nel caso particolare di un sistema lineare, la soluzione - indipendentemente dalla condizione iniziale - è definita in tutto l'intervallo in cui sono definiti i coefficienti:
Teorema di esistenza (caso lineare) : Se è una matrice a coefficienti continui sull'intervallo aperto , il sistema
per ogni ha soluzione unica definita su tutto I.
Dimostrazione:
Inoltre per passa solo la soluzione costante , definita su tutto I. Supponiamo dunque che , in modo che per ogni t nell'intervallo sul quale è definita, e mostriamo che (a,b)=I.
La linearità di A permette di ragionare per assurdo: se fosse si potrebbe prolungare X(t) dapprima fino alla chiusura [a,b], quindi anche oltre gli estremi dell'intervallo (utilizzandoli per definire nuove condizioni iniziali). Per prolungare X(t) fino a b, infatti, si osserva che
in quanto si può applicare la diseguaglianza di Gronwall alla diseguaglianza
risolve anche il problema iniziale ed è definita su un aperto strettamente più grande di (a,b), che quindi non può essere l'intervallo massimale di definizione della soluzione passante per .